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Abstract. Branching plays a major role in the human respiratory and cardiovascular

system. In this paper we model branching vessels in the human body as pipes merging

at a junction and numerically investigate the role of the bifurcation on the flow.

Various geometries with bifurcation angles of 90◦,120◦, 150◦ and 180◦, mother-to-daughter

tube diameter ratios of 1/2 and 1, and inlet flow Reynolds numbers of 200, 400 and 600 are

considered. In addition to velocity profile across the cross-section, shear stress and advective

mixing is studied. The axial velocity field in each daughter tube is found to contain sharp

peak, which has a very steep velocity gradient near the inside walls and a flat profile near

the outside walls, thus leading to a high shear stress on the inside splitting walls and lower

shear stress on the outside wall. Secondary flow pattern in each daughter tube consist of

two vortices, which are similar to the Dean vortices in a curved pipe.

Advective mixing describing how massless particles would be advected through the flow is

also computed. It turns out that the advective mixing moves the central region at the inlet

to the peripheral regions of the outlet, indicating that bifurcations may play an important

role in the exchange between the fluid and the vessel walls.

Figures are provided showing the mixing across several successive bifurcations.

To validate the computational model grid independence studies are carried.
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1. Introduction

Branching of fluid flows is extremely common within the human body, especially in the

cardiovascular system and within the lungs, and involves many different geometrical config-

urations and flow conditions of varying Reynolds numbers,pulsatility and wall flexibility.

Systems where branching plays an important role are usually involved in the transport of

nutrients, waste and respiratory gases. Lungs accomplish this function through a complex

system of branching tubes forming a bronchial tree, whereas the cardiovascular system does it

through an internal flow loop with multiple branches within which a complex liquid circulates.

Regardless of the different nature of the two systems, in both branching play an important

role and any understanding of the flow requires a discussion of the mechanism by which

bifurcations exert a downstream influence on the flow. Understanding this mechanism is key

to gaining more insight about the relationship between local hemodynamics in bifurcation

and vascular disease. Portions of the vascular wall exposed to disturbed flow, such as the

regions of high curvature and bifurcations are prone to the formation of atherosclerosis.

Tadjfar [12] has computed the flow and the shear-stress distribution for a single branching.

In a different paper [13] the same author has also studied analytically a three-dimensional

bifurcating tube where the daughter tube has a semi-circular cross-section.

The role of bifurcations within the human airways which form a rapidly diverging system

of branching tubes has been studied by Pedley [6].

Smith [10] has extended previous work of one-to-two branching to one-to-many tubes.

Understanding the flow within vascular and bronchial tracts of interest is rendered non-

trivial by the complex topology and hemodynamics. The complexity of the problem compels

us to make several simplifying assumptions at the outset. All tubes are assumed to be

straight circular pipes with smooth rigid walls on which the no slip condition is imposed.

The blood is assumed to be a Newtonian fluid with a fixed viscosity. The assumption of un-

steady flow is probably the most significant limitation in this study limiting its applicability

to physiological flows. Nonetheless, this work gives us important insights the flow especially

in cases where the unsteadiness has little effect to fluid dynamics in comparison to the local

geometry.
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This investigation concentrates on a basic symmetric branching flow, the branching being

from one mother tube to two daughter tubes downstream neglecting all effects of pulsatility,

rheological blood characteristics and wall deformability.

A qualitative picture of the flow in a branching tube with a maximal velocity on the axis

of the mother tube can be given by separating the phenomena that influence the flow into

two main parts.

The first part is due to the fact that the flow is divided into two streams and a growing

boundary layer is formed on the inside wall of the daughter tube with the velocity reaching

its peak value very close to the internal splitting wall - this will be referred to as the splitting

effect. The second effect is related to curvature and occurs since the flow turns a corner

and moves in a curved pipe. A centrifugal instability arises because the inertia of the faster

moving fluid pushes it away from the bend, the axial velocity profile is shifted towards the

internal wall of the pipe (i.e. away from the bend) and a secondary flow pattern typical of

Dean flow emerges. This flow effect will be called the curvature effect. Understanding the

combined influence on the flow of these two effects requires one to look into them separately,

since the observed flow will be a complex superposition of these two flow patterns.

Separate investigations of these two effects have been carried out before by various authors

and approximate analytic solutions of the flow has been found. In this study we merge these

two effects and manifestations of both of them will be visible in our solution.

The curvature effect has been studied both analytically and numerically within a bending

pipe with small [1], finite [9], varying [5] curvature. The splitting effect for a high Reynolds

number flow through a circular plane split along the diameter by a semi-infinite splitter plain

is considered by Blyth and Mestel [2] as an approximation to a bifurcation of angle zero.

The flow has been analyzed using a matched asymptotic expansion by dividing the flow into

four regions. Unlike Blyth’s approximation to a zero angle in this work we mainly consider

bifurcations with an obtuse angle and therefore our work can be considered an extension to

his small angle bifurcations.

The flow (i.e. the velocity field) at any point will depend on a number of parameters -

the location of the point, the Reynolds number, the mother to daughter tube diameter ratio,

the angle of bifurcation, the local geometry of the junction and its curvature, and finally the

conditions downstream of the bifurcation.
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Figure 1. Bifurcation Geometry

In this study we will solve the Navier-Stokes equation for bifurcations with various geome-

tries and various values for the above parameters. We will compute the mixing over one and

several generations of bifurcations, and finally the shear stress will be studied as well since

it is known that bifurcations are preferential sites for atherosclerosis.

2. Problem Formulation

The three dimensional laminar steady flow of incompressible Newtonian viscous fluid

through a straight mother tube bifurcating into two symmetrically divergent daughter tubes

of circular cross-section is considered.

2.1. Governing Equation and Non-dimensionalizing the Problem. It is convenient

to use the Navier-Stokes equation in non-dimensional units. Then the diameter and velocity

can be set to 1 and for a given geometry the flow will be associated with a unique Reynolds

number.

In dimensional form Navier-Stokes equation and the continuity equation (for an incom-

pressible fluid) are well known

ρ(
∂v

∂t
+ v · ∇v) = −∇p + µ∇2v + ρg(1)

∇ · v = 0(2)
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Now let us non-dimensionalize the above equation in terms of the following flow parameters

Ψ =
L2

cρ

µTc

(3)

Re =
ρLcUc

µ
(4)

Fr =
Uc√
gLc

(5)

where Lc, Tc and Uc = Lc

Tc
are the characteristic length, time and velocity of the problem

respectively. Ψ is a measure of the unsteadiness and Fr is a measure of the relative impor-

tance of gravity. Re is the Reynolds number which measure the balance between the inertial

and viscous forces.

Let v → v
Uc

, x → x
Lc

, t → t
Tc

p → p

ρU2
c

. Then we arrive at the non-dimensional form of the

Navier-Stokes equation:

(6)
Ψ

Re

∂v

∂t
+ v · ∇v = −∇p +

1

Re
∇2v +

1

Fr2 ĝ

where ĝ is a unit vector pointing in the direction of the gravitational field.

In this study we will be dealing with steady flows (Ψ = 0) where the effect of gravity plays

a negligible role locally (Fr = 0) and then the Navier-Stokes momentum transfer equation

is simplified to:

(v · ∇)v = −∇p +
1

Re
∇2v(7)

∇ · v = 0(8)

This is the Navier-Stokes equation in its general invariant form, with the conventional dot

product in Cartesian coordinates. Often non-Cartesian coordinates are more appropriate,

and it is therefore better to express the equation in a general curvilinear coordinate system,

and then the Navier-Stokes equation will read:

vkvi
;k = −gikp;k + νgjkvi

;jk(9)

vi
;k = 0(10)
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where vi
;j denotes the covariant derivative given by

vi
;j = vi

,j + Γi
jkv

k, Γi
jk =

1

2
gim(gmj,k − gjk,m + gkm,j)(11)

g is the metric tensor.

The tensor form of the Navier-Stokes equation in a curved coordinate system is useful

since often the coordinate system used is a curvilinear one (for instance in the case of a

pipe it is convenient to work in cylindrical coordinates ). Many difficult problems have been

solved in a perturbation series for small curvatures by expanding around a known solution.

A typical example is the derivation of the Dean flow in a curved pipe as a perturbation series

around Poiseuille flow in a straight pipe. See Appendix A for more details.

2.2. Boundary Conditions. Let ξ describe the position across the inlet, and χ the position

across any of the outlet.

We assume a parabolic profile at the inlet

~v(ξ) =

[

0, 0, 1 − ξ2

4

]

(12)

and a constant pressure gradient across the cross-section of the inlet and the outlet ∂p

∂ξ
=

∂p

∂χ
= 0 and the no slip condition is enforced on the tube walls.

All parameters in this problem have been non-dimensionalized as described in the last

section, where the characteristic length is taken as the diameter of the mother tube, and the

characteristic velocity is the maximal axial velocity in the mother tube. Then the Reynolds

number will be the only flow parameter, in addition to those defining the geometry,

Re =
ρvmaxD

µ
=

ρv̄R

µ
(13)

where v̄ is the mean velocity and R = D/2 is the radius.

It is evident that the velocity field must satisfy the following symmetries.

R1 : (x, y, z) → (−x, y, z) : (u, v, w) → (u, v, w)

R2 : (x, y, z) → (x,−y, z) : (u, v, w) → (u, v, w)(14)
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[ χ , β ] = Τ(ξ)

ξ

χ

T

Figure 2. Stream map

These symmetries will be manifest in our solutions, although in general they cannot be

used to confirm grid-independence since there are steady flows in which bistable and not

necessarily symmetric solutions may arise even with symmetric geometries and boundary

conditions.

2.3. Wall Shear Stress Calculation. A flow quantity of particular interest in this in-

vestigation is the wall shear stress defined on a surface with a normal n = [n1, n2, n3] as

follows

τi = µ(∂ivj + ∂jvi)nj τi =
1

Re
(∂ivj + ∂jvi)nj(15)

2.4. Transfer Function. Every streamline connects a point from the inlet to a point on the

outlet and therefore defines a mapping T : ξ → χ (Figure 2) which we will call the Stream

Transfer Function. Derivation of the transfer function requires computing the streamlines

and a knowledge of the velocity everywhere within the computational domain is necessary.

A stream line is a curve described by σ(t) ∈ R3 and satisfying the condition that it is

tangent to the velocity field everywhere

d

dt
σ(t) = v(σ(t))(16)

From this defining differential equation it is evident that integrating the velocity along the

streamline must result in the streamline itself, and we deduce that a streamline must satisfy

an integral equation, where the unknown function σ(t) appears both inside and outside of
6



the integral sign

σ(t) =

∫ t

0

dt′v(σ(t′))(17)

The integral definition is more convenient when dealing with complicated velocity fields

because it allows us to design an iterative technique to evaluate the stream lines. Starting

with an initial guess function σ0(t) we can integrate the velocity along that line, and obtain

a new stream line which hopefully will be a better approximation to the actual streamline.

σn(t) =

∫ t

0

dt′v(σn−1(t
′))(18)

If there exists a limit for this recursive equation, then it must converge to the actual solution

σn → σ when n → ∞.

A streamline defines a one-to-one correspondence between a point on the inlet and a point

in the outlet, and hence the stream transfer function from a point ξ at the inlet to a point

χ at the outlet T (ξ) = [χ, β] where

ξ = σ(0) χ = σ(∞)(19)

and β is a discrete variable which determines in which outlet the streamline ends up

β(ξ) =







0, ξ1 < 0 left outlet

1, ξ1 > 0 right outlet
(20)

β is undefined on on the splitting line ξ1 = 0 since streamlines that start there are prema-

turely terminated on the splitting wall of the bifurcation before they reach the outlets.

Deriving analytically an expression for the transfer function is a hopelessly difficult task in

the case of the complex bifurcation geometry we have, so we will only derive it numerically

in this work by integrating the streamlines numerically along the discrete velocity field.

Nevertheless, the technique for the derivation of T described in this section can be of use

for other, simpler geometries. Although somewhat irrelevant to the bifurcation geometry

considered in this investigation, as an illustrative example of the power of the above recursive

technique the stream transfer function is computed for a gently curving pipe to first order

in the curvature in Appendix A.
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3. Numerical Method

The first step before the numerical simulations is to define and discretize the computational

domain and for this purpose the commercial software package CFG-GEOM by CFD Research

Corporation has been used. CFD-GEOM supports the scripting language Python and all

the geometry and mesh operations are accessible from Python script language, making it

possible to write custom parametric script templates. The whole procedure for the generation

of the geometry and the meshing has been fully automated. The code used to generate the

geometry and the mesh is included for the reader’s convenience in Appendix B in case an

exact duplication of the geometries in this paper is necessary.

3.1. Geometry. As shown on Figure 1 the model consists of a mother tube of circular cross-

section and a unit diameter, and two daughter tubes, which apart from the region of local

adjustment near the bifurcation point, are also of circular cross-sections with a diameter r.

The axes of all the tubes are coplanar in the xz-plane. The angle subtended by the axes of

the left and right daughter tubes is α. Our interest in this paper will be to study how the

angle α affects the flow.

The radius of curvature Rcurv is another parameter, which adds an extra degree of freedom

to the bifurcation geometry and it determines how sharply the daughter tubes bend away

from the mother tube.

Figure 3 illustrates step by step the creation of the geometry and the incorporation of

each parameter into the geometry. First, start with a single circle of unitary diameter

representing the cross-section of the mother tube (a). From the two diametrically opposed

points of the circle extrude two diverging arcs of radius Rcurv and length α
2
Rcurv (b). At each

of the endpoints of the arcs attach orthogonally two circles of diameter r representing the

cross-sections of the daughter tubes. Extrude all of the three circles by a length L(c). This

essentially defines the skeleton of the geometry. It remains to define the surface geometry of

the bifurcation and to map the output of the mother tube to the two inputs of the daughter

tubes. For this the blending curve function of CFD-GEOM which smoothly connects two

lines by fitting a fourth-order polynomial between the selected endpoints, is employed. For

each daughter tube two blending curves are necessary to blend the top and the bottom to

the mother tube, and three more are necessary to blend the daughter tube to each other
8



yielding the geometry skeleton as shown in (d). It is now easy to patch the skeleton with

smooth 4-sided and 3-sided surfaces.

The radius of curvature is a parameter that only affects the geometry of the bifurcation

region, and for this reason it would be convenient to isolate it and express it in terms of the

other parameters of the geometry. A convenient choice is

(21) Rcurv =
1
2

+ r cos α
2

1 − cos α
2

.

This choice ensures that the distance between the inlets of the two daughter tubes is always

equal to 2, and only affects the geometry of the bifurcation region, the length of the straight

sections is unaffected. This of course is an arbitrary choice which make the geometry look

nice for obtuse angles, and for a different range of angles a different choice might be more

appropriate.

3.2. Mesh. Having defined the surface we proceed with its discretization. The finite volume

mesh is shown on Figure 3 An unstructured tetrahedral mesh is used for the region of the

bifurcation, and the straight section of each pipe is built up from triangular prism elements

whose height is appropriately stretched near the ends to save computational time.

The discretization procedures consists of three steps.

• Skeleton Discretization Define δ is a characteristic length parameter describing the

fineness of the mesh. Then we divide each line segment of the skeleton into the

following number of collocation points:

N = 1/δ(22)

NA = πr/δ(23)

NP = π/δ(24)

NL = L/δ(25)

NO =
α

2
Rcurv/δ(26)

NI =
α

2
(Rcurv +

1

2
)/δ(27)

NS = 2

(

Rcurv +
1

2
− cos

α

2
(Rcurv + r)

)

/δ(28)
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(e) (f)

Figure 3. Step-by-step generation of the surface geometry and the finite

volume mesh. Part of the mesh has been removed to show the unstructured

finite-volume discretization.

Here N is the number of elements across the parameters, and the rest of the notation

is explained on Figure 3. In choosing these numbers we have tried to ensure that

the length scale is roughly the same all over the computational domain, and that the

smallest elements are located in the junction region where we observe high gradients

of the velocity and pressure fields, and that the biggest elements are located at the

exit of each pipe where we expect the flow to be fully-developed.

• Triangulation The surface triangulation is generated using CFD-GEOM with an ex-

pansion parameter of 1.01.
10



• Tetrahedra and Prism Generation The tetrahedral mesh in the bifurcation region is

generated using the functionality of the CFD-GEOM with an expansion parameter of

1.01. The prism mesh in the straight sections is created by extruding the triangular

surface mesh from the input and outputs of the bifurcation region.

3.3. Flow Solver. For the numerical solution of flow in a bifurcating pipe the commercial

finite volume method based Navier-Stokes solver CFD-ACE, by CFD Research Corpora-

tion, has been used. The convergence has been accelerated by the employing the algebraic

multigrid acceleration.
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(a) 3 - 306 (b) 4 - 973 (c) 5 - 2,379

(d) 10 - 26,968 (e) 15 - 96,197 (f) 20 - 230,517

Figure 4. Grid refinement. The characteristic number of nodes across the

diameter and the total number of cells is displayed underneath each graph.

12



4. Numerical Validation

Based on the branching tube model chosen here, numerical grids are generated that extend

8 main tube radii downstream and upstream from the tube bifurcation of 120◦ and inlet to

outlet diameter ratio of 1 (L = 4,α = 120◦, r = 1). The grid independence study is carried

out for flow of Reynolds numbers Re = 200, 400

To estimate the error of the numerical computations and to ensure that numerical solution

asymptotically converge to the physical solution, we solve for a number of successively finer

geometries. The grid refinement is shown on Figure 4. The finest grid used is N = 35 and

contains 1,213,167 cells.

Four different measures will be used for independence. The first measure uses the pressure

drop between the inlet and the outlets. The second measure is the velocity profile at selected

locations at the outlet. The third measure is the transfer function, i.e. the streamline

mapping from the inlet to the outlet. And the final fourth measure is the distribution of the

shear stress on the wall.

4.1. Pressure Drop and Velocity Profile. The pressure drop and the velocity profile are

probably the easiest parameters to derive, but the least indicative of convergence. Conver-

gence of these quantities is a necessary, but not a sufficient condition for grid independence

since they are among the quantities that converge fastest and therefore other derived quan-

tities of interest may not have converged yet. Nevertheless for completeness we present

on Figure 5 the convergence for the pressure drop between the inlet and the outlets for

successively finer grids.

Figure 6 give a comparison of the velocity profiles at selected locations of the outlet

daughter tubes at N=25 and N=35.

4.2. Transfer Function. Streamlines are integrals of the velocity field and therefore it is

expected that they will converge more slowly. Figure 7 illustrates the convergence of a single

streamline.

To confirm grid independence the mixing patterns which are extensively studies in this

paper, we need to confirm that the stream transfer function has converged. The stream

transfer function is defined over the whole inlet cross-section, and hence to have an accurate

measure for its convergence we need to take into consideration more than one streamline. For
13
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Figure 5. Pressure Drop.

this purpose we choose twelve evenly spaced points across the inlet (Figure 8) and integrate

them along the velocity field until we reach the outlet. We use the following measure

ǫN =

(

1

nS

nS
∑

i=1

[TN(ξi) − T∞(ξi)]
2

)
1

2

(29)

to quantify the expected average deviation of a streamline for a grid with a fineness of N.

Here the index i runs over the streamlines, ns = 12 is the total number of streamlines, and

TN and T∞ are the transfer functions for a particular gird and the transfer function in the

continuum limit. The continuum limit in our case is taken to be the grid with the finest

mesh, i.e. T∞ = T35. The convergence of the result is shown on (Figure 9).

We can expect that for N = 25 the error in the stream transfer function to be around 2%

of the diameter.

Later on we will apply the numerically obtained transfer function TN repeatedly across

successive bifurcations and we would be interested to know how the error propagates. The

numerically obtained transfer function deviates from the analytical one.

[χN , βN ] = TN(ξ) = T (ξ) + ∆TN(ξ)

Here ξN describes the position on the outlet tube and βN can have discrete values labeling

the destination daughter tube.
14
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Figure 6. Velocity contours for N=25(red) and N=35(black).

We expect that when N → ∞ we will have |∆TN | → 0. The convergence will be smooth

away from the symmetry plane orthogonal to the bifurcation plane, but it will have great

oscillation close to that plane and on the plane the value of the function will be undefined

since streamlines will terminate at the stagnation point of the internal bend of the bifurcation

before reaching the outlet. Any variation around the plane will shift the stream from the one

daughter tube to the other, thus causing a big error in the final output. This is the result of

the fact that βN(ξ) is a step function and has a discontinuous first derivative.
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Figure 8.

Let us shift away from this region of discontinuity and consider regions that are not too

close to the symmetry plane. Then

T 2
N(ξ) = T 2(ξ) + T (T (ξ) + ∆TN(ξ)) + ∆TN(T (ξ) + ∆TN(ξ))

= T 2(ξ) +
∂TN

∂ξi

∆TN,i(ξ) + ∆TN(TN(ξ)) + O(∆T 2
N)

where the subscript i denotes the spacial component. Clearly the propagation of the error

will depend on the first derivative of the transfer function and the error can be expected to

increase when the rate of mixing increases.
16
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4.3. Normalized Wall Shear Stress. The final measure of the numerical convergence of

interest in this work is the distribution of the wall shear stress. The extracted values of the

wall shear stress are normalized by the magnitude of the wall shear rate in a straight pipe

with the same diameter, flow rate and Reynolds number.

As can be seen from Equation 15 the strain rate at the wall is dependent on the first

derivative of the flow. Thus like the transfer function which is the integral of the velocity, the

strain rate is another derived quantity and it will converge slowly. Figure 10 and 11 display

the convergence of the wall shear stress for Reynolds numbers of 200 and 400 respectively.

The results are close, but there are some differences in the peak values especially in the

case of the higher Reynolds number flow, where the grid may be insufficient to resolve some

of the finer flow details. Nevertheless although coarse, the graphs are useful in giving a

qualitative picture of the shear stress distribution.
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Figure 10. Wall Shear Stress for N = 15, 25, 35 and Re = 200 - top view

(a), distribution along the top and bottom wall of the bifurcation (b), and

along the internal wall of the bifurcation (c), θ being the deviation from the

direction of the z-axis as viewed from the origin.
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Figure 11. Wall Shear Stress for N = 15, 25, 35 and Re = 400. See caption

of Figure 10. The contouring scale is the same.
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5. Results and Discussion

Results are given for symmetrical flow with the following variations in parameter space

r = 0.5, 1; α = 90, 120, 150, 180; Re = 200, 400, 600.

5.1. Flow Profile. Profiles of the axial components of velocity along each daughter tube

are depicted on Figure 12. The profiles consist of a sharp peak near the inner wall of the

bifurcation which turns into a plateau towards the outer bend.

The emergence of the peak is caused by the centrifugal deflection of the faster moving

central streams which displace the more slowly moving streams near the inner walls and

thus also giving rise to a secondary velocity profile and a transverse pressure gradient. The

emergence of this sharp peak near the inner wall leads to a high velocity gradient and a high

shear stress on the wall. Likewise the plateau-like velocity profile in the inner bend with

almost a zero gradient leads to a very small shear stress on the outer side of the wall. The

shear stress will be discussed exclusively in a later subsection.

Comparing the results for different Reynolds numbers we note that a correlation exists

between how high the Reynolds number is and how sharp the observed peak is. In the

bifurcation region the profiles for different Reynolds numbers do not differ much but further

downstream the difference starts to become increasingly pronounced.

Downstream from the bifurcation the low Reynolds number flow becomes fully developed

quite early at a distance of around 2D from the entrance of the daughter pipe, whereas the

high Reynolds number flow of around Re = 600 takes much longer to obtain its developed

parabolic profile.

In addition to the 2D plots along the bifurcation plane, a three dimensional plot of the

velocity profile is presented on Figure 13 for a flow with a Reynolds number of 400. The

axial velocity emerges from the bifurcation with the shape of a sofa with a crest which peaks

close to the inner wall of the bifurcation and descends slowly in the tangential direction, but

goes down very steeply in the radial direction. Further downstream the crest engulfs the

central depression. At the distance of L = 4D the flow seems to have restored its parabolic

profile and looks more like a volcano.

Given the wide range of bifurcations in nature it may also be of interest to study how the

velocity profile is affected by varying the angle. Tadjfar [13] has considered only bifurcation
20
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Figure 12. Axial velocity profile for Reynolds numbers of 200 (dotted), 400

(dashed) and 600 (solid). The distance is measured in units of the diameter.

angles that are less than 90◦. We extend his work by considering obtuse bifurcation angles.

Figure 14 illustrates the profile at the entrance to the straight section of the daughter tube

for angles ranging between 90◦ to 120◦. Greater deflection angles as expected lead to higher

centrifugal forces, result in a more steep peak this also giving rise to a higher shear stress on

the wall (due to the higher velocity gradient).

To understand the flow fully it is necessary to consider the transverse velocity and pressure

gradients in addition to those in the acial axial direction. Figure 15 shows the secondary

velocity for three values of the Reynolds number. Unlike the case of a confluence [7] where

one observes 4 vortices, in the case of a bifurcation there are only two. It should be noted

that the strength of the secondary flow is positively correlated with the Reynolds number,

and in general does not exceed 10% of the maximal axial velocity. Downstream the strength

of the vortices is gradually dissipated by the action of viscosity. The effect of the vortices

is that within each daughter tube the fluid particles flow in two spiraling coils that are of

opposite helicity and do not mix with each other.

Dependence of the secondary velocity field for different bifurcation angles α is also pre-

sented on Figure 16. Increasing the angle of bifurcation leads to higher secondary velocity.
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Figure 13. Axal velocity profile for a 120◦ bifurcation and Re = 400

0.0

0.5

1.0

2.0

Figure 14. The axial velocity profile at the right daughter tube for bifurca-

tion angles of 90◦(yellow), 120◦(red),150◦(green),180◦(blue),210◦(black)

and a Reynolds number of 200. Arrow indicates increasing angle.
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Figure 15. Variation of transverse velocity with Re for values of 200,400 and

600 at several downstream stations (0.5D, 1D, 2D, 4D). The arrow underneath

each graph represents 1/10 of the axial velocity. Contours of the axial velocity

are also presented.

For completeness pressure is also presented on Figure 17. The pressure distribution is

mostly dictated by the local geometry of the tubes. It is linear within the pipes and as

noted by Tadjfar [13] too the effect of the bifurcation is limited to no more than 2D from

the bifurcation.
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Figure 16. Variation with α = 90, 150, 180. The arrow represents 1/10 of

the maximal velocity along the mother tube.
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Figure 17. Re=200,400,600 pressure field
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5.2. Advective Mixing. If there were no bifurcation the streamlines would remain straight

lines, and the stream transfer function would be the identity. The bifurcation introduces

dispersion of the streamlines and shifts the stream transfer function away from the identity

as can be computed by the method described in Section 2.4.

It is of interest to study what the trajectories of particles in a bifurcating flow would be.

Computing the transfer function would allow us to compute the mixing patterns for situations

where the dominant dispersion mechanism for the solute particles is advection, and all effects

of molecular diffusion and the inertia of the particles can be neglected. Only then would

the particle trajectories coincide with the streamlines (the steady flow requirement for this

is also met).

To illustrate the mixing we color-code the fluid with different color at the inlet and we

observe how the color is distributed at the outlet.

One concern with the numerical method of calculating the mixing pattern is whether the

results are dependent on the length of the inlet and outlet tubes. Figure 18 compares the

mixing pattern for L=4 and L=8 and as can be seen no differences between the color pattern

at the two different stations can be visible meaning that the pattern has reached its final

asymptotic distribution.

Mixing patterns will be considered for varying Reynolds numbers.

Figure 19 illustrates the mapping of streamlines from the input to the two outputs of a

bifurcating pipe at different Reynolds numbers for a geometry with r = 1 and α = 120◦.

The imperfections of the numerical method are evident by the white spaces close to the

boundary. In theory all streamlines must reach and terminate at the outlet as required by

the continuity equation, in practice due to the finitely many integration steps that can be

performed on a modern computer, the streamlines close to the boundaries where the velocity

is close to zero never really reach the outlet. In addition due to the finite grid size some of

the streamlines get deflected away from the computational domain and can be terminated

prematurely.

To visualize the results three coloring patterns have been used - radial, left-to-right and

top-to-bottom. From Figure 19 it is evident that the mixing pattern is richer for higher

Reynolds numbers and the spiraling/coiling motion is clearly visible.
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Figure 18. Mixing L = 4 and L = 8 at α = 120◦, r = 1.0 and Re = 120◦.

The two results are almost identical confirming that the at L=4 the mixing

has reached its asymptotic value

It is important to note that as expected the top-bottom and left-right symmetries of

Equation 14 are manifest in the mixing patterns.

Of particular interest is the mixing of the fluid which is color-coded radially since it

illustrates the mixing of the boundary layer. At the outlet the boundary layer (red) in the

mother tube is injected towards the centers of the daughter tube, and while for Re=200 the

injection is only partial since some of the red painted fluid is still in contact with the wall,

for higher Reynolds numbers the boundary layer is completely shifted into the center and

obtains a coiled shape. Likewise the central layers of the mother tube are distributed along

the boundaries of the daughter tubes, and the higher the Reynolds number the more even

the distribution is.

This mixing pattern indicates that bifurcations may play an important role in the exchange

between the vessel walls and the delivering fluid within. Since most of the exchange occurs

at the boundary, we would expect that the boundary layer will be mostly depleted before the
26



Re 200

Re 400

Re 600

Figure 19. Mixing

bifurcation, but after the bifurcation the richer central part of the fluid will spread towards

the periphery thus replenishing the vessel walls.

5.3. Recursive Advective Mixing. To compute the mixing along several generations of

bifurcations the direct method would be to rerun the numerical simulation for the new

geometry. But this is impractical for a large number of bifurcations given the complexity of

the geometry and the large amount of computational time necessary to obtain meaningful
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results. To avoid the laborious numerical computations we take a shortcut by assuming that

the distances between each generation of bifurcations are great enough that any downstream

and upstream influence among them is negligible. Then it would be simply a matter of

applying the stream transfer function repeatedly in order to obtain the mixing pattern after

each generation of bifurcation.

This of course is a simple model, which is quite detached from realistic bifurcations within

the human body, where the growing boundary layer after the bifurcation will not generally

become comparable to the radius of the daughter tube, and thus the next bifurcation will

disturb the flow before it has had a chance to reach its fully developed state, and a new

modified boundary layer will be formed. In such cases an exact numerical simulation is

indispensable. Nonetheless considering this simple model may still give important insights

into more complicated models.

In order to avoid recomputing the transfer function at each bifurcation, we choose the

mother-daughter tube diameter ratio so that the Reynolds number in each successive gener-

ation of bifurcations is constant. At each branching we have D → D/r and by the incom-

pressibility requirement v → vr2/2 To ensure that the Reynolds number remains the same

we require

Re =
ρvD

µ
=

ρvr2

2
D
r

µ
→ r =

1

2
(30)

meaning that the diameter of the daughter tube is half that of the mother tube, meaning

that at each generation the total outlet area decreases by half, and the velocity increases

by a factor of two. This assumption is necessary to save the computational time of recom-

puting the transfer function for the different Reynolds numbers at each generation, but it is

unfortunately an unrealistic one since for physiologically relevant flows such as the rapidly

branching network of the airways the cross-section at each generation increases, while the

radius of each daughter tube decreases [6].

Figure 20 illustrates the network of successive bifurcations (to 4th generation) that is the

next item we will consider next. The top row consists of coplanar bifurcations, and the

bottom row of out-of-pane bifurcations.
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Figure 20. Multiple successive bifurcations of α = 90◦, 120◦, 180◦ (left to

right) for planar and out-of-plane arrangements (top to bottom)

Figures 21, 22 and 23 illustrate the mixing patterns for r = 1/2 for Reynolds numbers of

200 and 400, and bifurcation angles of 90◦, 120◦, 150◦ and 180◦ respectively for the planar

geometry. The coloring at each station is subjected to repetitive stretching and folding,

which is more extreme at higher angles and Reynolds numbers. The evolution of the central

stream tube (colored in black) is to be considered. For the planar geometries of Figures 21 -

23 it is evident that at each station the central region is spread towards the periphery, and the

peripheral region is condensed towards the center. Thus the bifurcation plays an important

role of ”switching” the center and the boundary which certainly makes the exchange of

materials between the fluid and walls of the vessel more efficient.

Figures 24, 25 and 26 illustrate the mixing patterns in the case of the out-of-plane geom-

etry.

The figures are included for reference for future experiments studying the advective mixing

in a bifurcation.
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(a) Re = 200

(b) Re = 400

Figure 21. Planar Geometry α = 90◦

It should be noted that the system is still invariant under both symmetries noted in

Equation 14, and that those symmetries are manifest in the results.
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(a) Re = 200

(b) Re = 400

Figure 22. Planar Geometry α = 120◦
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(a) Re = 200

(b) Re = 400

Figure 23. Planar Geometry α = 180◦
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(a) Re = 200

(b) Re = 400

Figure 24. Out-of-Plane Geometry α = 90◦
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(a) Re = 200

(b) Re = 400

Figure 25. Out-of-Plane Geometry α = 120◦
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(a) Re = 200

(b) Re = 400

Figure 26. Out-of-Plane Geometry α = 180◦
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5.4. Wall Shear Stress. It is hypothesized that wall shear stress sites within are often the

sites of high risk of vascular diseases and atherosclerosis [13, 4]. Preferential sites include the

outer walls of the daughter tubes and inner wall of the bifurcation as will also be confirmed

by this study.

The wall shear stress is shown for several different angles for r = 0.5 and r = 1.0. The

extracted values of the wall-shear stress are normalized by the magnitude of the wall shear

rate in a straight pipe with the same diameter, flow-rate and Reynolds number.

The areas of low shear stress are readily identifiable from these figures and using the

empirically established negative correlation between intimal thickening and shear stress, one

can deduce that the areas most vulnerable to atherosclerosis are the outer walls at the

bifurcations, and the central part of the splitting wall.
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Figure 27. Wall Shear stress for r = 1.0 and α = 90, 150, 180, 210
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Figure 28. Wall Shear stress for r = 1.0 and α = 90, 120, 150, 180
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6. Conclusion

We have studied the velocity-field, shear-stress distribution and the advective mixing for

a single and a repeatedly branching system of tubes over a range of Reynolds numbers,

diameter ratios and bifurcation angles. We have obtained numerically accurate results,

confirmed by extensive grid-independence studies.

A number of simplifying assumptions have been made in this study including (i) rigid

walls, (ii) Newtonian fluid and (iii) steady flow. The vessel elasticity and deformation is

a factor which will mostly affect the flow close to the vessel boundaries and its effect on

the mixing will be minimal, although it might cause more significant variations in the shear

stress distribution. The Newtonian approximation for the fluid is also a valid one especially

so when one considers the blood in larger arteries and the air in the lungs since size of the

fluid particles is negligible. Of course for capillaries where the diameter becomes comparable

to the size of the red blood vessels the rheological characteristics of blood will become more

pronounced and the newtonian approximation will fail.

The assumption of steady flow does have some serious drawbacks since significant effects

of flow acceleration and deceleration are ignored. Yet, this study is only concerned with

capturing the effect of the local geometry, and in a future paper the effect of the unsteadiness

may be added into consideration.

The mixing patterns derived show that each bifurcation acts as a switcher between the

richer central stream tube and the boundary streams, thus replenishing the wall boundaries

with the richer fluid in the center.

The wall-shear stress distribution found in this study agrees with previous such studies

and confirms clinical results that the most vulnerable sites to atherosclerosis are the outer

walls of the dividing arteries and the inside walls of the bends, which are characterized by a

low shear stress.
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Figure 29. Once and twice-curved pipes

Appendix A. Mixing in Curved Pipe

Murata, Miyaka and Mirane [5] compute the flow in a once-, twice-curved pipe . We will

take their results to obtain an analytical result for Stream Transfer function to first order

in the small parameter κ describing the curvature. We will only consider the once- and

twice-curved cases. The geometry of the pipes in these two types of flows will be determined

by the center-line equations

ŷ = (1 + κ2ẑ2)
1

2(31)

ŷ = tanh (κẑ)(32)

which describe once- and twice-curved cases respectively.

By expanding the solution for the flow in the small parameter κ

v = v0 +
∑

κn+1vn(33)

where v0 is the Poiseuille flow

v0 =











0

0

1 − r2











(34)

And the first order correction is given by
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v1 =











− Re
288

(1 − r2)2((4 − r2) cos θ 1
κ2

d2y

dz2

Re
288

(1 − r2)((4 − 23r2 + 7r4) sin θ 1
κ2

d2y

dz2

−r(1 − r2)
(

Re2

11520
(19 − 21r2 + 9r4 − r6) − 3

4

)

cos θ 1
κ2

d2y

dz2











(35)

v = v0 + κ2v1 + O(κ3)(36)

σ0(t) = x0 + tv0(37)

Applying Equation 18 successively to σ0 we obtain that to order κ2 it converges on the

second iteration

σ3(t)

(38)

= σ2(t) + O(κ3)

=











r0

θ0

z0 + (1 − r2
0)t











+ K











−Re(1 − r2
0)

2(4 − r2
0) cos θ0 t

Re(1 − r2
0)(4 − 23r2

0 + 7r4
0) sin θ0 t

r0

40
(1 − r2

0) [−8640 + Re2(19 − 21r2
0 + 9r4

0 − r6
0) − 40Re(4 − 5r2

0 + r4
0) cos θ0 t]











κ2

+ O(κ3)

K =







1
128

onces-cruved case

e2(e2
−1)

36(1+e2)3
≈ 1

18378
twice-cruved case

(39)
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Figure 30. Infinitesimal mixing pattern for a curved pipe. The mixing in

the center is from the inner towards the outer wall of the bend.

ξ1 = r0 ξ2 = θ0

χ1 = r1 χ2 = θ1

t =
z1 − z0

1 − r2
0

+ (O)(κ2)(40)

Hence the transfer function from z0 to z1 will be

Tz0→z1
(ξ) = ξ + KRe(z1 − z0)





−(1 − ξ2
1)(4 − ξ2

1) cos ξ2

(4 − 23ξ2
1 + 7ξ4

1) sin ξ2



κ2 + O(κ3)(41)

Usually we would be interested in T−∞→+∞ but unfortunately this expansion method is

not appropriate since as can be seen from Equation 41 it would give an infinite result for

finite κ. In order to be able to obtain a meaningful result we need to consider the expansion

of the transfer function to all orders of κ which is very difficult to do analytically.

Therefore, the result is only valid for small cross-sectional distances z1 − z0 << 1 and

should be written in its infinitesimal form.

1

Kκ2Re

δξ

δz
=





−(1 − ξ2
1)(4 − ξ2

1) cos ξ2

(4 − 23ξ2
1 + 7ξ4

1) sin ξ2



+ O(κ)(42)

42



Figure 30 presents the result graphically, where each vector represents the infinitesimal

displacement over a longitudinal distance of dz. The biggest mixing is experienced by the

points in the regions close to the wall at the top and the bottom.

Appendix B. Code

In this section the code used to create the bifurcation geometry is presented in cases the

reader needs to duplicate the exact same geometry in this paper. The BifGeom.py contains

methods and geom client.py is a sample client that utilizes these methods to create the

geometry. The files must be run from within CFD-GEOM by CFD Corporation.

import BifGeom

# H=0 − height , u sua l l y s e t to 0
# L=4 − l ength o f the s t r a i g h t po r t i on s o f the pipe

# r =0.5 − mother to daughter tube diameter r a t i o
# alpha deg=120 − t o t a l b i f u r c a t i o n ang le in degree s
# de l t a=1/N − g r id spac ing

N = 25 ;

BifGeom . BuildGeom (0 , 4 , 0 . 5 , 120 , 1/N)

import math

import GPoint
import GCurve
import GEntity
import GSurface
import GCurve
import GManip
import GLoop
import GEdge
import GUnstruct
import GGrid

import GInter face

#compute a modi f i ed b lend ing curve to avoid the ang le o f ze ro

de f BlendCurve (LA, PA, LB, PB) :
r = 1 . 0/2 . 5
curve = GCurve . CreateBlendCurve (LA, PA, LB, PB)

op sp l1 = GManip . S p l i t ( curve , r , 1−r )
op sp l2 = GManip . S p l i t ( op sp l1 [ ’ curves ’ ] [ 1 ] , (1−2∗ r )/(1− r ) , 1−(1−2∗ r )/(1− r ) )
curve = GCurve . CreateThroughPoints (PA, op sp l1 [ ’ po ints ’ ] [ 0 ] , op sp l2 [ ’ po ints ’ ] [ 0 ] , PB)
re turn curve

#bu i ld geometry by manually g i v ing rad iu s o f cuvature
# H − height , u sua l l y s e t to 0

# L − l ength o f the s t r a i g h t po r t i on s o f the pipe
# r − mother to daughter tube diameter r a t i o
# alpha deg − t o t a l b i f u r c a t i o n ang le in degree s

# R curv − b i f u r c a t i o n curvature
# de l t a − g r id spac ing

de f BuildGeomR(H, L , r , alpha deg , R curv , d e l t a ) :
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alpha deg = alpha deg /2 .0
R = R curv + 0 .5

#computations
alpha = alpha deg ∗math . p i /180

C = math . cos ( alpha )
S = math . s i n ( alpha )

#Creaet geometry
OO = GPoint . Create (0 , H, 0)

c i r c l e 0 = GCurve . Crea t eC i r c l e (OO, 0 . 5 )
c i r c l e 1 = GManip . S p l i t ( c i r c l e 0 , 0 . 5 , 0 . 5 )
c i r c l e 2 = GManip . S p l i t ( c i r c l e 1 [ 0 ] , 0 . 5 , 0 . 5 )
c i r c l e 3 = GManip . S p l i t ( c i r c l e 1 [ 1 ] , 0 . 5 , 0 . 5 )

l ine LA =GCurve . CreatePtRevolvedCurve ( c i r c l e 0 [ ’ po ints ’ ] [ 0 ] , [ R, 0 , 0 ] ,
[ R, 1 , 0 ] , a lpha deg )

l ine LB =GCurve . CreatePtRevolvedCurve ( c i r c l e 1 [ ’ po ints ’ ] [ 0 ] , [−R, 0 , 0 ] ,
[−R, 1 , 0] ,− alpha deg )

l ine CP = [ c i r c l e 2 [ 1 ] , c i r c l e 3 [ 0 ] , c i r c l e 3 [ 1 ] , c i r c l e 2 [ 0 ] ]

l ine CA = GManip . DuplAndRotate ( [ R, 0 , 0 ] , [ R, 1 , 0 ] , a lpha deg , 1 , l ine CP )
l ine CB = GManip . DuplAndRotate ([−R, 0 , 0 ] , [ −R, 1 , 0 ] , −alpha deg , 1 , l ine CP )

op sc lA = GManip . Sca l e ( [ r , r , r ] , [ R−C∗R curv , H, S∗R curv ] , l ine CA )
op scLA = GManip . Sca l e ( [ r , r , r ] , [−R+C∗R curv , H, S∗R curv ] , l ine CB )

l ine TP = GManip . DuplAndTranslate ( [ 0 , 0 , −1] , L , 1 , l ine CP )
l ine TA = GManip . DuplAndTranslate ( [ S , 0 , C] , L , 1 , l ine CA )
l ine TB = GManip . DuplAndTranslate ([−S , 0 , C] , L , 1 , l ine CB )

l ine LP0 = GCurve . CreateThroughPoints ( c i r c l e 2 [ ’ po ints ’ ] [ 0 ] , l ine TP [ ’ po ints ’ ] [ 0 ] )
l ine LP1 = GCurve . CreateThroughPoints ( c i r c l e 1 [ ’ po ints ’ ] [ 0 ] , l ine TP [ ’ po ints ’ ] [ 1 ] )

l ine LP2 = GCurve . CreateThroughPoints ( c i r c l e 3 [ ’ po ints ’ ] [ 0 ] , l ine TP [ ’ po ints ’ ] [ 2 ] )
l ine LP3 = GCurve . CreateThroughPoints ( c i r c l e 0 [ ’ po ints ’ ] [ 0 ] , l ine TP [ ’ po ints ’ ] [ 3 ] )

l ine LA0 = GCurve . CreateThroughPoints ( l ine CA [ ’ po ints ’ ] [ 0 ] , l ine TA [ ’ po ints ’ ] [ 0 ] )

l ine LA1 = GCurve . CreateThroughPoints ( l ine CA [ ’ po ints ’ ] [ 1 ] , l ine TA [ ’ po ints ’ ] [ 1 ] )
l ine LA2 = GCurve . CreateThroughPoints ( l ine CA [ ’ po ints ’ ] [ 2 ] , l ine TA [ ’ po ints ’ ] [ 2 ] )
l ine LA3 = GCurve . CreateThroughPoints ( l ine LA [ ’ po ints ’ ] [ 0 ] , l ine TA [ ’ po ints ’ ] [ 3 ] )

l ine LB0 = GCurve . CreateThroughPoints ( l ine CB [ ’ po ints ’ ] [ 0 ] , l ine TB [ ’ po ints ’ ] [ 0 ] )
l ine LB1 = GCurve . CreateThroughPoints ( l ine LB [ ’ po ints ’ ] [ 0 ] , l ine TB [ ’ po ints ’ ] [ 1 ] )
l ine LB2 = GCurve . CreateThroughPoints ( l ine CB [ ’ po ints ’ ] [ 1 ] , l ine TB [ ’ po ints ’ ] [ 2 ] )

l ine LB3 = GCurve . CreateThroughPoints ( l ine CB [ ’ po ints ’ ] [ 2 ] , l ine TB [ ’ po ints ’ ] [ 3 ] )

lineAB = GCurve . CreateBlendCurve ( l ine LB3 , l ine CB [ ’ po ints ’ ] [ 2 ] , l ine LA1 ,
l ine CA [ ’ po ints ’ ] [ 1 ] )

lineAU = BlendCurve ( l ine LA0 , l ine CA [ ’ po ints ’ ] [ 0 ] , l ine LP0 , c i r c l e 2 [ ’ po ints ’ ] [ 0 ] )
lineAD = BlendCurve ( l ine LA2 , l ine CA [ ’ po ints ’ ] [ 2 ] , l ine LP2 , c i r c l e 3 [ ’ po ints ’ ] [ 0 ] )
lineBU = BlendCurve ( l ine LB0 , l ine CB [ ’ po ints ’ ] [ 0 ] , l ine LP0 , c i r c l e 2 [ ’ po ints ’ ] [ 0 ] )

lineBD = BlendCurve ( l ine LB2 , l ine CB [ ’ po ints ’ ] [ 1 ] , l ine LP2 , c i r c l e 3 [ ’ po ints ’ ] [ 0 ] )
lineUU = BlendCurve ( l ine LA0 , l ine CA [ ’ po ints ’ ] [ 0 ] , l ine LB0 , l ine CB [ ’ po ints ’ ] [ 0 ] )
lineDD = BlendCurve ( l ine LA2 , l ine CA [ ’ po ints ’ ] [ 2 ] , l ine LB2 , l ine CB [ ’ po ints ’ ] [ 1 ] )

#edges
NA = in t (math . p i ∗ r / de l t a )
NP = in t (math . p i / de l t a )

NL = in t (L/ de l t a )
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NO = in t ( alpha ∗R curv/ de l t a )
NI = in t ( alpha ∗R/ de l t a )
NS = in t ( 2 . 0 ∗ (R−C∗( R curv+r ) )/ de l t a )

edge CA0 = GEdge . CreatePowerLaw ( l ine CA [ 0 ] , NA/4 , 1 , 1)
edge CA1 = GEdge . CreatePowerLaw ( l ine CA [ 1 ] , NA/4 , 1 , 1)

edge CA2 = GEdge . CreatePowerLaw ( l ine CA [ 2 ] , NA/4 , 1 , 1)
edge CA3 = GEdge . CreatePowerLaw ( l ine CA [ 3 ] , NA/4 , 1 , 1)

edge CB0 = GEdge . CreatePowerLaw ( l ine CB [ 0 ] , NA/4 , 1 , 1)
edge CB1 = GEdge . CreatePowerLaw ( l ine CB [ 1 ] , NA/4 , 1 , 1)
edge CB2 = GEdge . CreatePowerLaw ( l ine CB [ 2 ] , NA/4 , 1 , 1)
edge CB3 = GEdge . CreatePowerLaw ( l ine CB [ 3 ] , NA/4 , 1 , 1)

edge CP0 = GEdge . CreatePowerLaw ( l ine CP [ 0 ] , NP/4 , 1 , 1)
edge CP1 = GEdge . CreatePowerLaw ( l ine CP [ 1 ] , NP/4 , 1 , 1)
edge CP2 = GEdge . CreatePowerLaw ( l ine CP [ 2 ] , NP/4 , 1 , 1)

edge CP3 = GEdge . CreatePowerLaw ( l ine CP [ 3 ] , NP/4 , 1 , 1)

edgeUU = GEdge . CreatePowerLaw ( lineUU , NI , 1 , 1)

edgeAB = GEdge . CreatePowerLaw ( lineAB , NS, 1 , 1)
edgeDD = GEdge . CreatePowerLaw ( lineDD , NI , 1 , 1)

edgeAU = GEdge . CreatePowerLaw ( lineAU , NI , 1 , 1)

edge A = GEdge . CreatePowerLaw ( l ine LA , NO, 1 , 1)
edgeAD = GEdge . CreatePowerLaw ( lineAD , NI , 1 , 1)

edgeBU = GEdge . CreatePowerLaw ( lineBU , NI , 1 , 1)
edge B = GEdge . CreatePowerLaw ( l ine LB , NO, 1 , 1)
edgeBD = GEdge . CreatePowerLaw ( lineBD , NI , 1 , 1)

#loops
loops =[ ]

l oops . append (GLoop . Create ( [ edge CP0 , edge CP1 , edge CP2 , edge CP3 ] ) )

l oops . append (GLoop . Create ( [ edge CA0 , edge CA1 , edge CA2 , edge CA3 ] ) )
l oops . append (GLoop . Create ( [ edge CB0 , edge CB1 , edge CB2 , edge CB3 ] ) )

l oops . append (GLoop . Create ( [ edge CP3 , edgeAU , edge CA3 , edge A ] ) )
l oops . append (GLoop . Create ( [ edge CP0 , edge B , edge CB0 , edgeBU ] ) )
l oops . append (GLoop . Create ( [ edge CP1 , edgeBD , edge CB1 , edge B ] ) )

l oops . append (GLoop . Create ( [ edge CP2 , edge A , edge CA2 , edgeAD ] ) )
l oops . append (GLoop . Create ( [ edge CA0 , edgeAB , edge CB3 , edgeUU ] ) )
l oops . append (GLoop . Create ( [ edge CA1 , edgeDD , edge CB2 , edgeAB ] ) )

l oops . append (GLoop . Create ( [ edgeUU , edgeBU , edgeAU ] ) )
l oops . append (GLoop . Create ( [ edgeDD , edgeBD , edgeAD ] ) )

#su r f a c e s
s u r f s =[ ]

s u r f s . append ( GSurface . CreateFourSided ( l ine CP [ 0 ] , l ine CP [ 1 ] , l ine CP [ 2 ] , l ine CP [ 3 ] ) )
s u r f s . append ( GSurface . CreateFourSided ( l ine CA [ 0 ] , l ine CA [ 1 ] , l ine CA [ 2 ] , l ine CA [ 3 ] ) )
s u r f s . append ( GSurface . CreateFourSided ( l ine CB [ 0 ] , l ine CB [ 1 ] , l ine CB [ 2 ] , l ine CB [ 3 ] ) )

s u r f s . append ( GSurface . CreateFourSided ( l ine CP [ 3 ] , lineAU , l ine CA [ 3 ] , l ine LA ) )
s u r f s . append ( GSurface . CreateFourSided ( l ine CP [ 0 ] , l ine LB , l ine CB [ 0 ] , lineBU ) )
s u r f s . append ( GSurface . CreateFourSided ( l ine CP [ 1 ] , lineBD , l ine CB [ 1 ] , l ine LB ) )

s u r f s . append ( GSurface . CreateFourSided ( l ine CP [ 2 ] , l ine LA , l ine CA [ 2 ] , lineAD ) )
s u r f s . append ( GSurface . CreateFourSided ( l ine CA [ 0 ] , lineAB , l ine CB [ 3 ] , lineUU ) )
s u r f s . append ( GSurface . CreateFourSided ( l ine CA [ 1 ] , lineDD , l ine CB [ 2 ] , lineAB ) )

s u r f s . append ( GSurface . CreateFourSided ( lineAU , lineUU , lineBU ) )
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s u r f s . append ( GSurface . CreateFourSided ( lineAD , lineDD , lineBD ) )

#trim
f o r count in range ( l en ( s u r f s ) ) :

GLoop . TrimSurface ( s u r f s [ count ] , l oops [ count ] )

#c r ea t e i r r e g u l a r domain
s u r f s e t = GUnstruct . CreateClosedSur faceSet s ( l oops )
domain = GUnstruct . CreateDomain ( s u r f s e t [ ’ domains ’ ] [ 0 ] )

GGrid . SetSurfaceMeshingParameters ( domain , 0 , 30 , 1 . 01 , 10 .0∗ de l ta , d e l t a /10 .0 , 1)
GUnstruct . GenerateTriangularMesh ( domain )
GGrid . SetTetMeshingParametersAndMesh ( domain , 0 , 1 , 1 . 0 1 , 5 . 5 , 0)

# extrude p ipe s
extP = GGrid . ExtrudeBlocksAndPrismsAlongVector ( l oops [ 0 ] , [ 0 , 0 ,−1] , L , NL, 1 , 1 , 1)
extA = GGrid . ExtrudeBlocksAndPrismsAlongVector ( l oops [ 1 ] , [ S , 0 , C] , L , NL, 1 , 1 , 1)

extB = GGrid . ExtrudeBlocksAndPrismsAlongVector ( l oops [ 2 ] , [−S , 0 , C] , L , NL, 1 , 1 , 1)

GEdge . SetHyptan ( extP [ ’ edges ’ ] [ 0 ] , i n t (NL/4 . 0 ) , d e l t a , 0 . 0 ,1 )

GEdge . SetHyptan ( extA [ ’ edges ’ ] [ 1 ] , i n t (NL/2 . 0 ) , d e l t a , 0 . 0 ,1 )
GEdge . SetHyptan ( extB [ ’ edges ’ ] [ 2 ] , i n t (NL/2 .0 ) , d e l t a , 0 . 0 ,1 )

#BC

GEntity . SetBC ( extP [ ’ loops ’ ] [ 0 ] , ’ I n l e t ’ )
GEntity . SetBC ( extA [ ’ loops ’ ] [ 0 ] , ’ Outlet ’ )
GEntity . SetBC ( extB [ ’ loops ’ ] [ 0 ] , ’ Outlet ’ )

GEntity . SetBCName ( extP [ ’ loops ’ ] [ 0 ] , ’ in ’ )
GEntity . SetBCName ( extA [ ’ loops ’ ] [ 0 ] , ’ outA ’ )
GEntity . SetBCName ( extB [ ’ loops ’ ] [ 0 ] , ’ outB ’ )

GEntity . SetVCName (domain , ’ volT ’ )
GEntity . SetVCName ( extP , ’ volP ’ )
GEntity . SetVCName ( extA , ’ volA ’ )
GEntity . SetVCName ( extB , ’ volB ’ )

#compute rad iu s o f curvature
de f rad iu s ( r , a lpha deg ) :

a lpha deg=alpha deg /2 .0
C = math . cos (math . p i /180∗ alpha deg )

re turn (0.5+ r ∗C)/(1−C)

#bui ld geometry ( curvature computed automat i ca l l y )

de f BuildGeom(H, L , r , alpha deg , d e l t a ) :
l oops = BuildGeomR(H, L , r , alpha deg , r ad iu s ( r , a lpha deg ) , d e l t a )

#c r ea t e geometry and save i t as a d t f f i l e f o r p r o c e s s i ng with CFD−ACE

def CreateGeometryOnce (L , r , alpha deg , de l ta , f i l ename ) :
BuildGeom (0 , L , r , alpha deg , d e l t a )
GInter face . DTFWrite 3d ( f i l ename )
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