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Abstract

In this work we compute the motion of a general 3D variable shape body immersed

in an incompressible inviscid fluid. The body achieves locomotion by changing its

shape. The relationship between the surface undulations and the motion is expressed in

terms of a hydrodynamical connection A, that relates the shape variables to the group

variables describing the shape and position of the body respectively. We compute the

matrix form of the connection analytically and numerically. The analytical method is

not exact and essentially constitutes a boundary perturbation method that involves a

series expansion for small shape variations. The numerical method is a finite difference

technique, which involves discretizing the body into triangular panels, and solving

for the flow around the body by assigning the appropriate boundary conditions on

each panel. The two methods yield the same results in the appropriate limit of small

perturbations to a spherical body, thus confirming their correctness. A check that the

3D code for an infinitely long body yields the same results as expected in the 2D case

is an additional verification of the correctness of the code.

Having verified the correctness of the code, we describe forward and turning gaits

of motion, and the possibility of control.
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1 Introduction

The purpose of this work is to derive the motion due to the variation of the surface of

a general variable body immersed in an inviscid and irrotational fluid.

The primary motivation is the interest in underwater robotic vehicles and the search

for innovative propulsion mechanisms beyond the standard propellers. Although sur-

face variations may not lead to a very high speed motion, they provide higher maneu-

verability and efficiency and are the primary source of motion of aquatic animals.

An analytical method will be outlined, but due to its high complexity it will not

be pursued to completion. Instead, the numerical programming approach will be em-

phasized. The strength of the numerical method is that it is not limited to small

variations of the surface and allows for arbitrary body geometry. (The triangulation

scheme in this paper relies on the parametrization of the body in spherical coordinates,

which means that the surface should be star-shaped (Figure 1), however, it is easy to

overcome this limitation.)

The main limitation of the model is neglecting viscous effects, which play a very

important role in the motion of aquatic animals for instance. Hence, the model is

mainly applicable to smooth bodies without any sharp edges, as the model relies on

the body not being able to generate vorticity in the fluid.

Mason & Burdick studied a similar problem in a paper published in 1999 [3] and

found an approximate analytical solution for a two dimensional amoeba-like body. The

results derived by them will be extended to the three dimensional case. Additionally,

Melli-Huber, Kanso and Rowley developed a model of a three link swimmer consisting

of rigid ellipses, which can move relative to each other, and showed that such a system

can achieve motion [2].

Any realistic robotic vehicle would have a finite number of actuators that would

deform its surface. Thus it is reasonable to divide the surface variation into several

modes corresponding to each actuator instead of allowing the surface to be infinitely

variable.
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(a) (b)

Figure 1: The only requirement imposed by the triangulation scheme on the shape in this

model is that it is star-shaped, i.e. at every direction we cross the surface at a unique point

(a). If any ray emanating from the center crosses the surface more than once (b) the surface

is not star-shaped.

2 Background

We parameterize the surface of the body

F (θ, ϕ, s1, ..., sn) (1)

where si(t) are the shape variables as a function of time that define each mode of

surface deformation. θ and ϕ are the azimuthal and polar angles respectively.

F (θ, ϕ)

Z1

Y1

X1

Y0

Z0

~n(θ, ϕ)

~r0

FB

X0FO

Figure 2: Body and Observer frames
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2.1 Reference Frame

We fix a frame FB to the body of the swimmer, and let FO denote an inertial reference

frame (Figure 2). The position in the inertial reference frame will be

[~r]O = R[~r]B + ~r0 (2)

where R ∈ SO(3) is a rotation matrix describing the orientation of FB with respect to

FO, and ~r0 is FB’s origin in the inertial frame.

Given the linear velocity ~ξ(t) and the angular velocity ~ω(t) in FB, we would like to

compute the time evolution of the motion of the body frame, i.e. the time evolution of

R and ~r0.

Let FB be instantaneously fixed. Then the velocity of a point ~r with respect to FB

~v = ~ξ + ~ω × ~r = ~ξ + Ω~r

where

Ω =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


is an antisymmetric matrix. Since R and ~r0 are fixed, the velocity in the observer

frame will be
d

dt
[~r]O = R

d

dt
[~r]B = R~v

Substituting ~v
d

dt
[~r]O = RΩ[~r]B +R~ξ (3)

Now we let FB move with the body, i.e. we keep [~r]B fixed. Then

d

dt
[~r]O =

dR

dt
[~r]B +

d~r0
dt

(4)

Since [~r]B is an arbitrary point on the body, for Equation 3 and 4 to hold we require

that corresponding terms be equal

Ṙ = RΩ

~̇r0 = R~ξ
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Solving the above differential equation for the matrix R is equivalent to solving the

following integral equation

R(t) = 1 +
∫ t

0
dt′R(t′)Ω(t′)

A formal solution of the integral equation can be constructed iteratively (starting with

R0(t) = 1)

R(i+1)(t) = 1 +
∫ t

0
dt′R(i)(t′)Ω(t′)

Repeating the iteration infinitely many times we may expect to obtain the solution

R(t) = 1 +
∞∑

n=1

∫ t

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtnΩ(tn)...Ω(t1)

which is known as the Dyson series. The Dyson series can be shown to be equal to

R(t) = Pe
R t
0 dt′Ω(t′)

where P is the time-ordering operator. For two time dependant operators the time-

ordered operator is defined by

P{A(t)B(t′} =

{
A(t)B(t′), if t > t′

B(t)A(t′), if t < t′

Thus the position of the body at any instance of time will be described by

R(t) = Pe
R t
0 Ω(t′)dt′ (5)

~r0(t) =
∫ t

0
R(t′)~ξ(t′)dt′ (6)

If Ω commutes with itself at different times P will be the identity, but this is not the

case in general, so we cannot simplify the solution further. It will be more convenient

to evolve the differential equations in time numerically.

Formally the location of FB will be given by g ∈ SE(3).

g =

 R ~r0

~0T 1

 g−1ġ =

 Ω ~ξ

~0T 0

 (7)
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SE(3), the Special Euclidian group, is a continuous group under the binary operation

of matrix multiplication. SE(3) is a differentiable manifold, and the quantity g−1ġ is

an element of the Lie algebra of SE(3), se(3). There is a 1-1 correspondence between

g−1ġ and R6, i.e. the components of linear ~ξ and angular ~ω body velocity.

2.2 Potential Flow

Given our assumption of an irrotational flow ∇× ~v = 0, the velocity field of the fluid

can be expressed as the potential of a scalar function φ.

~v = ∇φ

The assumption of incompressibility and conservation of mass imply

∇ · ~v = 0

then

∇2φ = 0

This is Laplace’s equation, and it has a unique solution given a Neumann boundary

condition for the normal derivative ∂φ/∂n on the surface. The fluid motion around

the body is described by an unbounded potential flow. We will assume that the fluid

velocity at infinity is zero. We solve the Laplace equation with Neumann boundary

conditions by separation of variables. By the Kirchhoff principle for potential flow

around a rigid body, the general fluid potential can be expressed as

φ =
3∑

i=1

(ξiφ
g
i + ωiφ

g
i+3) +

n∑
j=1

φs
j ṡj (8)

The terms φg
i are Kirchhoff potentials, defined with respect to a certain coordinate, to

represent the potential for the body moving at unit speed along that coordinate with

every other coordinate held constant.

The instantaneous velocity in the body frame of a surface point will be ~ξ + ω ×
~F (θ, ϕ, s) + ∂

∂si

~F (θ, ϕ, s)ṡi, where ~F = F r̂ in body frame. At the surface the velocity
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of the body and the fluid must match

∇φg
i · ~n = ni i = 1, 2, 3

∇φg
i · ~n = (êi × ~F ) · ~n = (~F × ~n)i i = 4, 5, 6

∇φs
i · ~n = ∂ ~F

∂si
· ~n ∀si

(9)

2.3 Hydrodynamical Connection

To compute the Lagrangian we find total kinetic energy of the system body-fluid

T = TB + TF

=
1
2
q̇T Λ(q)q̇ +

ρ0

2

∫
F
‖∇φ‖2dV (10)

where ρ0 is the fluid density and Λ is the kinetic energy metric in the absence of the

fluid.

The integral over the volume of the fluid can be simplified by invoking Stokes

theorem and using the identity ∇ · (φ∇φ) = ∇φ · ∇φ+ φ∇2φ.

∫
F
‖∇φ‖2dV =

∫
F
∇ · (φ∇φ)dV = −

∫
Σ
φ(∇φ · n)dA (11)

where we have taken into account that the surface integral at infinity is zero. The

minus sign is introduced by the fact that the normal vectors on the boundary n point

towards the fluid - the region of integration.

The potential φ depends only on the geometry and velocity of the submerged body.

Expanding the potential in terms of the Kirchhoff potentials (Equation 8), we can

express the kinetic energy of the fluid in terms of the velocity of the body.

Then

T =
1
2

 ġ

ṡ

T  Λgg +Agg Λgs +Ags

(Λgs)T + (Ags)T Λss +Ass

 ġ

ṡ


Agg and Ags are the added inertia terms due to effect of the fluid, calculated by substi-

tuting the Kirchhoff potentials (Equation 8) in the integral for the fluid kinetic energy
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(Equation 11).

Agg
ij (s) = −ρ0

2

∫
Σ
(φg

i (∇φ
g
j · n) + φg

j (∇φ
g
i · n))dS

Ags
ij (s) = −ρ0

2

∫
Σ
(φg

i (∇φ
s
j · n) + φs

j(∇φ
g
i · n))dS (12)

We can derive the equations governing the mechanics of the system from the Euler-

Lagrange equations. We will seek to find the connection between the shape variables

si and the group variables g.

g−1ġ = −A(s)ṡ (13)

Our aim in this paper is to solve Equation 13. Numerically, we solve for g by

evolving in time through a Runge-Kutta scheme. To find an explicit form of A(s) at

each time step one needs to employ the methods of geometric mechanics. Mason and

Burdick [3] consider this problem in detail and conclude that in the case of a fluid-body

system with zero momentum the connection has the following form:

A(s) = I−1
d (s)(IdAd)(s) (14)

where

Id(s) = Λgg(s) +Agg(s) (15)

(IdAd)(s) = Λgs(s) +Ags(s) (16)

We will compute A(s) analytically and numerically in the next sections. Although

we will touch upon the analytical means briefly in the next section by considering the

method of boundary perturbation, we will mainly emphasize the numerical method.

The numerical method does not suffer from the shortcoming of the analytical method

of being applicable only to small amplitude motion.

In Section 3 we describe the Boundary Perturbation method to solve for the flow

around the body. Then in Section 4 we numerically compute the intrinsic inertia matrix

Λ and the added inertia matrix A, and obtain a numerical algorithm to solve for the

connection A. In Section 5 we consider an examples where we compare the results of

the two methods in the previous sections.
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3 Boundary Perturbation Method

We define the radius-vector (the shape) as the sum of two components - an unperturbed

part and small perturbation.

F (θ, ϕ, s1, ..., sn) = F0(θ, ϕ) + εF1(θ, ϕ, s1, ..., sn), (17)

where

F1 =
n∑

i=1

si(t)σi(θ, ϕ), (18)

si and σi are the temporal and the spacial components, that describe the different

modes of surface variation corresponding to actuator mode i. F0 is the unperturbed

surface and F0 = const. corresponds to a sphere. The requirement for small perturba-

tions is satisfied by letting ε� 1.

The fluid surrounding the body is perfectly irrotational . We can determine the

potential from applying the boundary conditions on the surface and from the require-

ment that u = ∇φ approaches zero at infinity.

In the case of spherical symmetry the solution to the Laplace equation is

φ(r, ϕ, θ) =
∞∑

k=0

(
Akr

k +
Bk

rk+1

)
Pk(ϕ, θ) (19)

where Pk(ϕ, θ) is the angular dependence 1 We must take Al = 0 since the first term

would cause the velocity to tend to infinity for infinitely large r. Then solution acquires

the simpler form

φ(r, ϕ, θ) =
∞∑

k=0

ak
Pk(ϕ, θ)
rk+1

≡
∞∑

k=0

akΦk (20)

Given a solution matching the unperturbed boundary we need to find a solution match-

ing the perturbed boundary conditions. We will use a method very similar to perturba-

tion theory in Quantum Mechanics. It will be different in the fact that the perturbation

will be on the boundary and not on the operator. Let us expand the potential in a

1In the general case Pk will be the spherical harmonics, but in our case we will have azimuthal symmetry

so it will be the Legendre polynomials in terms of cos(θ)
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power series in terms of ε .

φ = φ(0) + εφ(1) + ε2φ(2) + ...+ εiφ(i) + ... (21)

where

φ(i) =
∞∑

k=0

ak
(i)Φk (22)

Our purpose is to express the coefficients ak
(i) in terms of the perturbation.

The potential should satisfy the new boundary condition on the perturbed surface Σ

∇φ · ~n|Σ = vn (23)

We expand both sides of Equation 23 in terms of ε and equate terms of equal power.

First we need to compute the normal ~n at each point on the surface. The two

tangential components on the surface will be

~t1 =
∂

∂ϕ
(F r̂) =


∂F
∂ϕ

F

0

 (24)

~t2 =
∂

∂θ
(F r̂) =


sin(ϕ)∂F

∂θ

0

F

 (25)

The normal component will then be their cross product.

~n = ~t1 × ~t2 =


F 2

−F ∂F
∂ϕ

−F sin(ϕ)∂F
∂θ

 (26)

Note that we need not normalize the above expression since it occurs on both sides

of the boundary condition equation (Equation 23). Since F = F0 + εF1 and since

F0 = const.

~n =


1

0

0

+2ε


F1
F0

−∂ϕ
F1
F0

− sin(ϕ)∂θ
F1
F0

+ε2


(F1

F0
)2

−F1
F0
∂ϕ

F1
F0

− sin(ϕ)F1
F0
∂θ

F1
F0

 = ~n(0)+ε~n(1)+ε2~n(2) (27)
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where we have divided by F 2
0 to non-dimensionalise ~n.

Next we need to expand the gradient of the potential in terms of ε.

∇φ(i)|Σ =
∞∑

k=0

ak
(i)∇Pk(ϕ, θ)

rk+1
|r=F

∇φ(i)|Σ =
∞∑

k=0

ak
(i) 1
F k+2

~ψk(ϕ, θ)

where

~ψk =


−(k + 1)Pk

∂Pk
∂ϕ

1
sin(ϕ)

∂Pk
∂θ

 (28)

We may expand 1
F k+2 = 1

(F0+εF1)k+2 to obtain

1
F k+2

=
∞∑

j=0

εjfk
(j) (29)

where

fk
(j) =

1
F k+2

0

(k + 1 + j)!
j!(k + 1)!

(−F1

F0
)j

Then

∇φ(i)|Σ =
∞∑

k,j=0

ak
(i) ~ψkfk

(j)εj

Now taking into consideration the fact that

∇φ|Σ = ∇

( ∞∑
i=0

εiφ(i)

)
|Σ =

∞∑
i=0

εi∇φ(i)|Σ

we obtain the power series expansion of the gradient in terms of ε

∇φ|Σ =
∞∑

k=0

~ψk

∞∑
i,j=0

ak
(i)fk

(j)εi+j

Dotting the gradient into the normal vector on the surface

∇φ|Σ · (~n(0) + ε~n(1) + ε2~n(2)) = v(0) + εv(1) + ε2v(2) + ... (30)

Equating terms of equal order in ε and using Einstein’s summation convention for

repeated indices

a
(0)
k u

(0)
k = v(0)

a
(1)
k u

(0)
k + a

(0)
k u

(1)
k = v(1)

a
(2)
k u

(0)
k + a

(1)
k u

(1)
k + a

(0)
k u

(2)
k = v(2)

a
(3)
k u

(0)
k + ...

13



where
u

(0)
k = ~ψk · ~n(0)fk

(0)

u
(1)
k = ~ψk · (~n(0)fk

(1) + ~n(1)fk
(0))

u
(2)
k = ~ψk · (~n(0)fk

(2) + ~n(1)fk
(1) + ~n(2)fk

(0))

u
(3)
k = ...

(31)

Thus
a

(0)
k u

(0)
k = v(0)

a
(1)
k u

(0)
k = v(1) − a

(0)
k u

(1)
k

a
(2)
k u

(0)
k = v(2) − a

(1)
k u

(1)
k − a

(0)
k u

(2)
k

a
(3)
k u

(0)
k = ...

(32)

and we may obtain the coefficients a(i)
k by expanding the right sides in terms of the

complete basis of angular functions u(0)
k (ϕ, θ). Note that each successive approximation

a
(i)
k will depend on the lower order approximations (a(i−1)

k , a
(i−2)
k , · · · , a(0)

k ). The task

of finding these coefficients will be additionally complicated by the fact that in general

the set of functions u(0)
k will not be orthogonal so we will not be able to isolate each

component by taking a dot product. Instead we will have to solve a system of linear

equations.

The problem may be simplified by expanding u(0)
k in terms of a complete basis of

ortho-normal functions {el(ϕ, θ)}.

u
(0)
k = Bklel

where Bkl are the expansion coefficients, which can be easily found by taking the dot

product with el of both sides of the equation and exploiting the orthogonality of the

functions (ei · ej = δij). Then

Bkl = el · u
(0)
k

The dot product, depending on the type of orthogonal functions, is defined as a

weighted integral over a unit sphere (the domain of [ϕ, θ]). Substituting u(0)
k = Bklel

in Equation 32 we obtain

a
(i)
k Bklel = ρ(i)

14



For convenience we have renamed the right sides of Equation 32 to ρ(i). Dotting both

sides with el

Bkla
(i)
k = el · ρ(i)

This is a system of linear equations with constant known coefficients Bkl that needs

to be solved for the unknown a(i)
k . This task may seem to be prohibitive at first since the

function space spanned by el is infinite dimensional, so we will have an infinite number

of equations - one for each value of the index l. The problem can be significantly

simplified if we make the following assumptions.

1. Assume Bkl = 0 if l > k, i.e. Bkl is a lower triangular matrix with all super-

diagonal entries equal to zero. This means, by the definition Bkl = el · u
(0)
k , that

the basis functions u(0)
k is a linear combination only of the first k members of

the orthonormal basis {el}. As an example, the Legendre polynomials Pk(cos(θ))

satisfy this condition in terms of the basis {cosl(θ)} or the basis {cos(lθ)}.

2. Assume that for every finite i there exists λ(i) such that for any l > λ(i), el · ρ(i)

vanishes.This means that ρ(i) is a linear combination of at most λ(i) of functions

el. This will be true in our case since we express the surface undulation in terms

of a finite number of surface variation modes 2. If the body’s surface perturbation

is not divisible into a finite number of modes, the current assumption would be

violated, and then we will have to deal with an infinite system of equations.

Based on these two assumptions, all terms on the left hand side with Bkl, for which k <

l, and all terms on the right hand side with l > λ will vanish. This simplification allows

us to construct the solution iteratively starting from aλ until a0 by only considering

2The existence of a maximal λ(i) for ∀i follows by induction on i For the base case i = 0 the statement

will be true since ρ(0) = v(0) and v(0) consist of finitely many linear combinations of the basis functions. For

the induction step we note that ρ(i) depends on lower order terms ρ(i′) with i′ < i. Then if the statement

holds for i′ < i it will hold for i too. By induction we prove that for any i ρ(i) will be a linear combination

of a finite number of basis functions, meaning there should exist a maximal lmax = λ(i) for ∀i. QED

15



the non-vanishing terms.

aλ =
eλ · ρ
Bλλ

aλ−1 =
eλ−1 · ρ−Bλ,λ−1aλ

Bλ−1,λ−1

... (33)

a1 =
e1 · ρ−B21a2 − · · · −Bλ1aλ

B11

a0 =
e0 · ρ−B10a1 − · · · −Bλ0aλ

B00

where we have left out the superscript (i) on a, ρ and λ for conciseness. The explicit

form of the coefficients in Equation 33 completes our derivation of the potential around

an undulating body.

φ(i) =
λ(i)∑
k=0

a
(i)
k Φk (34)

where Φk are the known eigen-solutions to the Laplace equation.

Essentially, what we have described so far, is a method that will output the coef-

ficients a(i)
k given the boundary conditions for the normal velocity v. which will allow

us to construct the Kirchhoff potentials and the added inertia terms.

The perturbation method permits us to obtain the potential function around any

body in a fluid to the desired order of accuracy.The calculations for higher order per-

turbations are quite tedious and we will go no higher than first order perturbation

theory in this paper.

Having evaluated the Kirchhoff potential functions, it is possible in principle to

calculate the added mass terms, the hydrodynamical connection and the motion of

the body as a whole. However, we will go no further than computing the potentials,

since deriving expressions for the added inertias involves integration over the irregular

surface of the body and our expressions have already become quite cumbersome and

heavy. Although we will abandon the analytical method at this point, later it will play

a very important role in validating our numerical algorithm in Section 5.
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4 Numerical Method

The perturbation approach allowed us to compute the potentials approximately. Cal-

culating the motion of the body requires that we evaluate the added and intrinsic

inertia terms at different time steps, and that we use these to evaluate the connection

matrix.To compute all these quantities numerically, first of all we will divide the body

surface into finite elements. To keep things as simple as possible we chose the panels

to be triangular.

Next we will compute the added inertia matrix describing the effect of the fluid. We

compute the motion of the fluid around the body by assigning source-density distribu-

tion to the panels, which would lead to a flow equivalent to that obtained by satisfying

the Neumann boundary condition.

Finally, we will compute the intrinsic inertia matrix for an arbitrarily shaped body

by subdividing the body into small volume elements and summing the inertia matrices

of all the elements. We obtain each element by connecting each of the panels on the

surface to the origin, from which we obtain volume elements with 4 triangular faces,

i.e. tetrahedrons. To evaluate the sum we need to compute the intrinsic inertia for

each individual tetrahedron.

4.1 Triangulation

This section deals with the division of a body described in spherical coordinates into

discrete elements. We will seek to divide the body into relatively uniform triangles.

It is easy to see that the problem will reduce to the discretization of a unit sphere,

since once we discretize a unit sphere we can extend the solid angle subtended by each

panel to any arbitrarily shaped surface defined in polar coordinates.

Figure 3: Recursive Division of triangles
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As a first step we inscribe a regular Platonic solid with triangular faces into a unit

sphere. There are only three regular convex Platonic figures with triangular faces:

a tetrahedron (4 faces), an octahedron (8 face) and an icosahedron (20 faces). The

inscribed Platonic figure provides the basic triangulation, then in order to refine the

triangulation further we divide each triangular face into four smaller triangles by tak-

ing the midpoints of each side and interconnecting them (Figure 3). Repeating this

recursively yields higher and higher depths of triangulation and precision. At each step

of refinement s the number of triangles will grow exponentially (4s) and we may not

be able to afford too high refinements since this becomes computationally expensive.

In planar geometry when we divide an equilateral triangle in this way we obtain four

identical triangles. Yet, this will not be true on a spherical surface and the triangle

will not be identical. The icosahedron yields smaller triangles and a more equal sub-

sequent division, since locally the sphere can be approximated by a plane. Therefore,

we will use an icosahedron as a basis triangulation in our program. No Platonic figure

has more triangular faces than the icosahedron, so it is impossible to obtain a more

uniform triangulation by starting from a different figure.

Refer to Figure 4 for a comparison of triangulation starting from an octahedron

and an icosahedron.

In the case of a non-spherical body the distance from the center will lead to another

source of non-uniformity among the triangle. All triangles will subtend roughly the

same solid angles, and their area will be proportional to the distance from the center.

For small perturbations all triangles will be roughly the same distance from the center

and the variation in size will be negligible.

18



−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0
−1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1
−1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2
−1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3
−1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4
−1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

5

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: 0,1,2,3,4,5 order triangulation starting from a octahedron and icosahedron respec-

tively
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4.2 Fluid Inertia

In this section we compute the contribution of the fluid to the connection. The added

inertia matrix A reflects the increase in inertness due to the presence of the fluid. It is

related to the total kinetic energy of the ambient flow by

TF =
1
2

 ġ

ṡ

T  Agg Ags

(Ags)T Ass

 ġ

ṡ

 (35)

To compute the added inertia terms we need to know how the flow behaves when the

surface varies. The added inertia terms depend on the Kirchhoff potentials correspond-

ing to each group or shape variable (Equation 12 gives the explicit form). To compute

these terms we solve for the ambient flow described in terms of a potential function.

The exact solution of the problem of potential flow around an arbitrarily shaped

body can be approached in a variety of ways. One method is the boundary perturbation

theory which gives an approximate solution to the problem for small perturbations.

Yet, if we are interested in solutions for more complex situations we must eventually

resort to numerical methods. Since we are aiming to solve Laplace’s equation we use a

finite-difference approximation over the fluid volume. This brute force approach would

be too inefficient though. Instead, the Laplace equation may be reduced to an integral

equation for a source-density distribution on the surface of the body (Hess and Smith

[1]). Assigning source density distribution on the surface reduces the problem domain

from a 3D domain to a 2D one.

Given a source-density distribution σ(p′) at point p′ we may express the potential

at any point P as

φ(P ) =
{

∂B

σ(p′)
r(P, p′)

dA′ (36)

where primed quantities indicate integration over the source surface ∂B and r(P, p′)

represents the distance between the two points. The objective is to compute a source

distribution on the surface that fulfills the Neumann boundary conditions. To that pur-

pose we apply the Neumann boundary condition to Equation 36 to obtain an integral
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equation involving the unknown source distribution σ(p), p ∈ ∂B

− 2πσ(p) +
{

∂B

∂

∂n

( 1
r(p, p′)

)
σ(p′)dA′ = vn(p) (37)

known as the Fredholm integral equation 3 of the second kind over the boundary surface

∂B for which the unknown function σ(p) appears both inside and outside the integral.

We solve the integral equation numerically by dividing the surface into small panels

and we adjust the source density on each element in such a way that the Neumann

boundary condition is satisfied at the center of each panel.

Consider two panels i and j on the surface. Assign unit source-density to each

panel. The potential and hence the velocity induced on any point can be calculated

using Equation 36. Call the normal velocity induced by panel i on the midpoint of

panel j Aij . We seek to adjust the source-density distribution in such a way that the

normal velocity of the fluid is equal to the normal velocity of the body. If the unknown

source-density on panel i is not 1 but σi the velocity induced on the center of panel j

will scale proportionally from Aij .1 to Aijσi. The sum of all velocities induced at the

center of panel j must match the normal component of the body velocity vnj at that

point , i.e.

vnj = Aijσi

vn = Aσ (38)

Hence the source-density on each panel must be

σ = A−1vn (39)

As the number of panels becomes large the discrete solution σi will tend to the actual

continuous solution of Equation 37.

The numerical method requires inverting a matrix, which takes quadratic time in

the dimension of the matrix. As the number of panels becomes large this will be the

main bottleneck, and the most time demanding part of the algorithm.

3Note that the integral appears with inverted signs in [1] since they define the velocity as the negative

gradient of the potential
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To compute the added inertia matrices we will make use of the numerical solution for

the source-density distribution (Equation 39). Let Φij describe the potential induced

by panel i on panel j and let vnj describe the boundary velocity at the center of panel

j. Then the added inertia relies on computing terms of the form (see Equation 12)∫
Σ
φ(∇φ · n)dS ≈

N∑
i,j=1

Φijvnj∆Sj (40)

where ∆Sj is the area of panel j and vnj is the normal velocity at the center of panel j

(boundary condition). By appropriately adjusting the normal components of velocity

for each case we may compute the relevant added inertias terms.

Equation 40 relies on computing the potential Φij induced by panel i on the center

of panel j. Next we will show how to compute the potential Φij and velocity Vij induced

by each panel on every other.

The potential induced by a triangle with uniform unit source density is

φ =
x

∆

dA′

r
(41)

where dA is an area element of the triangle 4. The primed quantities imply integration

over the source. For convenience we will switch to a frame of reference in which the

triangle lies in the xy-plane and the point P at which we compute the influence will

have coordinates ~r = (x, y, z) (Figure 5).

����
����
����

����
����
����

x

y

P(x,y,z)

dx’

dy’

(x1, y1)

~r′

~r
~r − ~r′

(x2, y2)

(x3, y3)

Figure 5: A plane triangle lying in the xy-plane.

Hess [1] solves the integral in Equation 41 by switching to cylindrical coordinates

with an origin (x, y, 0), i.e. the foot of the perpendicular from P to the plane of the
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triangle (see Figure 6). In this frame the integral reduces to

φ =
∮

∂∆

∫ R

0

RdRdθ√
R2 + z2

(42)

where R2 = x2 + y2 and using the fact that

r2 = R2 + z2 dr =
RdR√
R2 + z2

the integral is further reduced to the form

φ =
∮

∂∆
r dθ − |z|∆θ (43)

Note that

∆θ =

 0, outside4

2π, inside4
It seems as if the term is discontinuous as we cross the side of the triangle, but as Hess

argues, this will be matched by an equal and opposite discontinuity of the first term

in Equation 43 related to the sign change of dθ and hence overall the potential will be

continuous.

(x, y, 0)

y

x
(X, Y, 0)

R

R

(x1, y1)

(x2, y2)

(x3, y3)

θ

R12

(x1, y1)

(x2, y2)

d12s12 (x, y)

s
(1)
12

s
(2)
12

Figure 6: Introduction of cylindrical coordinates.

Computing the potential from Equation 43 involves the following quantities, all of

which are labelled on Figure 6.

d12 =
√

(x2 − x1)2 + (y2 − y1)2

R12 = −(x− x1)S12 + (y − y1)C12
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d12 is the distance between nodes 1 and 2, and R12 is a signed perpendicular distance

to the side 12.

Now define

C12 = x2−x1
d12

S12 = y2−y1

d12

s
(1)
12 = (x1 − x)C12 + (y1 − y)S12 s

(2)
12 = (x2 − x)C12 + (y2 − y)S12

r1 =
√

(x− x1)2 + (y − y1)2 + z2 r2 =
√

(x− x2)2 + (y − y2)2 + z2

and the final solution for the integral can be expressed using the following quantities

R12 = (x1 − x)S12 − (y1 − y)C12

Q12 = ln
(r1 + r2 + d12

r1 + r2 − d12

)
J12 = tan−1

(R12|z|(r1s(2)12 − r2s
(1)
12 )

r1r2R2
12 + z2s

(1)
12 s

(2)
12

)
where tan−1 is defined over the range from −π to π by taking into consideration the

signs of the numerator and denominator. The potential and the velocities are then

given by

φ = R12Q12 +R23Q23 +R31Q31 + |z|(J12 + J23 + J31 − ∆θ) (44)

vx = −S12Q12 − S23Q23 − S31Q31 (45)

vy = +C12Q12 + C23Q23 + C31Q31 (46)

vz = sgn(z)(∆θ − J12 − J23 − J31) (47)

Note that on the surface of the triangle all J ’s vanish and

vz = 2π sgn(z)

This complete our derivation of the added inertia matrix in terms of the fluid

potential around the body.

Figure 7 shows a few examples of an ambient flow, computed by assigning source

density distribution to the triangular elements of the surface of variously shaped bodies.
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Figure 7: The flow around a body moving at unit velocity along the z axis in FB and FO

respectively. The coloring shows the source distribution on the surface that would induce

the velocity field. Darker colors correspond to regions which act as sinks and lighter ones to

regions which act as sources.

25



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(a) 0
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−0.1

−0.05

0

0.05

0.1

(b) 1

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.1

−0.05

0

0.05

0.1

(c) 2
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−0.1

−0.05

0

0.05

0.1

(d) 3

Figure 8: The numerically computed velocity (blue) deviates from actual velocity (red)

due to the discrete nature of the triangulation. Higher orders of triangulations lead to an

improvement in the fit.
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4.3 Body Inertia

In this section we calculate the intrinsic inertia of the body in the absence of the fluid.

The intrinsic inertia matrix Λ in the absence of the fluid satisfies

TB =
1
2

 ġ

ṡ

T  Λgg Λgs

(Λgs)T Λss

 ġ

ṡ

 (48)

where ġ ≡ (~v, ~ω)T ∈ R6 is the rate of translation and rotation of the body frame FB. To

compute the locked inertia matrix Λgg and the cross term matrix Λgs we need to make

assumptions about the body’s internal structure. We will assume that the amoeba is

homogenous and that its kinetic energy is equal to that of an instantaneously rigid

body with the same center-of-mass velocity and angular rotation.

TB =
m~vc

2

2
+

1
2
~ωT Ic~ω (49)

Ic is the moment of inertia with respect to the center of mass.

There are three contributions to the center of mass motion

~vc = ~v + ~ω × ~r +
∑

i

~ciṡi

where ~v is the motion due to the translation of the frame, ~ω × ~r is the motion due to

the rotation of the frame and
∑

i ~ciṡi is the motion due to the shape changes. ~ci is the

velocity of the center of mass when the body is perturbing its surface at unit speed

ṡi = 1 with only mode i being active. Expanding

~vc
2 = v2 + (~ω × ~r) · (~ω × ~r) + (

∑
i ~ciṡi)2 +

2~v · (~ω × ~r) + 2~v ·
∑

i ~ciṡi + 2(~ω × ~r) ·
∑

i ~ciṡi (50)

Consider the identity

(~ω × ~r) · (~ω × ~r) = ~r · ((~ω × ~r)× ~ω) = ω2r2 − (~ω · ~r)2 = ω2r2⊥

and define

Σ =


0 z −y

−z 0 x

y −x 0

 Π =


| |

~c1 ... ~cn

| |

 (51)
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where x, y and z are the components of ~r. Then

TB =
m

2

(
v2 + ωT Ic +mr2⊥

m
ω + 2(Πṡ)2 + 2vT Σω + 2vT Πṡ+ 2ωT ΣT Πṡ

)
(52)

By the parallel axis theorem, I = Ic +mr2⊥ is the moment of inertia with respect

to the origin of the FB frame.

Comparing Equation 48 with 52

Λgg = m

 13 Σ

ΣT I/m

 Λgs = m

 Π

ΣT Π

 (53)

Π is straightforward to evaluate - we simply make the body change its surface at

unit speed and compute the displacement of the center of mass by averaging the centers

of mass of all volume elements. It is slightly more complicated to compute I. We will

now describe a numerical method to find the moment of inertia matrix for an arbitrary

body. The moment of inertia matrix is a second order tensor defined by the following

equation for the rotational kinetic energy

Tr =
1
2
ωT Iω (54)

where Tr is the rotational kinetic energy and ω is the angular velocity.

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (55)

The components of the inertia matrix are given by integrating the appropriates mo-

ments over the whole volume

Izz =
∫
V x

2 + y2dm

Ixy = Iyx = −
∫
V xydm

(56)

Connecting the vertices of all triangular elements on the surface to the origin will break

up the body into tetrahedra, with one vertex at the origin, and the other three on the

surface of the body. The tetrahedra will emanate from the origin. Finding the moment

of inertia of the body then reduces to finding the sum of the inertia matrices of each
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tetrahedron. In the limit where the number of tetrahedra N tends to infinity, the sum

of all moments of inertia will tend to the actual moment of inertia of our body.

I = lim
N→∞

N∑
i=1

Ii (57)

The problem of finding the moment of inertia for a general 3D body is then reduced

to finding the sum of the inertia matrix for its composite tetrahedra.

Consider tetrahedron with vertices at (~v0, ~v1, ~v2, ~v3) (Figure 9). Let us find its

moment of inertia as a function of the coordinates of the vertices. First consider the

diagonal element.

Izz = ρ

∫
V
x2 + y2dv = ρ

∮
A
~F · d~a

where we have used the divergence theorem and where ~F is such that ∇ · ~F = x2 + y2.

One such ~F that satisfies this equation is

~F =


0

0

(x2 + y2)z


Similarly in evaluating

∫
V xy dv we use

~F =


0

0

xyz


Hence for a tetrahedron

Izz = ρ
4∑

t=1

nzt

∮
At

(x2 + y2)zdA (58)

Ixy = −ρ
4∑

t=1

nzt

∮
At

xyzdA (59)

where the index t runs over the 4 sides of the tetrahedron and nz represents the

z competent of the normal to the surface. We have to evaluate the four integrals in

Equation 58, so we parameterize the triangle 4ijk, described by vertices {~vi, ~vj , ~vk}, in

terms of s and t

~r = ~vi + s(~vi − ~vj) + t(~vi − ~vk), where
{ s+ t ≤ 1

s, t ≥ 0
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or

~r = ~o+ s~a+ t~b, where
{ s+ t ≤ 1

s, t ≥ 0

Thus

I(i)
zz = ρ|~a×~b|nzi

∫ s

0
ds

∫ 1−s

0
dt(~r2 − z2)z

I(i)
xy = −ρ|~a×~b|nzi

∫ s

0
ds

∫ 1−s

0
dtxyz

A more explicit form of the above integrals is then

I(i)
zz = ρ|~a×~b|

[ 1
60

(azb
2
x + azb

2
y + a2

xbz + a2
ybz)

+
1
30

(axazbx + ayazby + axbxbz + aybybz)

+
1
20

(a2
xaz + a2

yaz + b2xbz + b2ybz)

+
1
6
(axazox + bxbzox + azo

2
x + bzo

2
x + ayazoy + bybzoy + azo

2
y + bzo

2
y)

+
1
12

(azbxox + axbzox + azbyoy + aybzoy + a2
xoz + a2

yoz + axbxoz + b2xoz + aybyoz + b2yoz)

+
1
3
(axoxoz + bxoxoz + ayoyoz + byoyoz)

+
1
2
(o2xoz + o2yoz)

]
(60)

I(i)
xy = −ρ|~a×~b|

[ 1
20

(axayaz + bxbybz)

+
1
60

(ayazbx + axazby + azbxby + axaybz + aybxbz + axbybz)

+
1
12

(ayazox + bybzox + axazoy + bxbzoy + axayoz + bxbyoz)

+
1
24

(azbyox + aybzox + azbxoy + axbzoy + aybxoz + axbyoz)

+
1
6
(azoxoy + bzoxoy + ayoxoz + byoxoz + axoyoz + bxoyoz)

+
1
2
oxoyoz

]
(61)

The other matrix elements of I(i) can be obtained by cyclical permutations

of the subscript indices {x, y, z}. The integrals over the other faces of the tetra-

hedron may be obtained by suitably replacing ~a, ~b and ~o with the appropriate

vertices. Finally we obtain the total moment of inertia matrix of the tetrahedron

by summing the integral over all faces (Figure9),i.e.

I(i) = I
(i)
4102 + I

(i)
4203 + I

(i)
4301 + I

(i)
4123 (62)
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where we identify the triangle 4ijk with 4~o,~o+~a,~o+~b. To obtain the total moment

1

2

3

0

Figure 9: Faces of tetrahedron.

of inertia for the body we must additionally sum over all tetrahedra.

I =
N∑

i=1

I(i) (63)

Since each of the interior faces (4102, 4203, 4301) occur twice with opposite signs

- once for each of two neighboring volume elements - their contribution to the

sum will cancel out and the sum will simplify to

I =
N∑

i=1

I
(i)
4123 (64)

5 Amoeba Example

So far we have described two methods to find the potential around a deformable

body - analytically through the boundary perturbation method and numerically

through the panel method. In this section there will be frequent references to the

boundary perturbation section. Here we will compute the potential to 1st order

explicitly for simple motion given by

F = 1 + ε(s1 cos(2ϕ) + s2 cos(3ϕ)) (65)

The normal component of the velocity of the body on the boundary will be

v =

R

ẋ

ẏ

ż

+ εS


ṡ1

ṡ2

ṡ3


 · ~n (66)
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Here R is a rotation matrix, which converts from cartesian to spherical coordi-

nates. An explicit form of R is given by Equation 67

R =


sin(ϕ) cos(θ) sin(ϕ) sin(θ) cos(ϕ)

cos(ϕ) cos(θ) cos(ϕ) sin(θ) − sin(ϕ)

− sin(θ) cos(θ) 0

 (67)

And S describes the surface variations (Equation 68)

S =


cos(2ϕ) cos(3ϕ) 0

0 0 0

0 0 0

 (68)

The Laplace equation with the above boundary condition may be solved by

separation of variables

φ = φz ż + φs
1ṡ1 + φs

2ṡ2 (69)

where φi are the Kirchhoff potentials. To simplify the problem we correctly

assume that φx = φy = 0, which is implied by the azimuthal symmetry. Due to

the azimuthal symmetry the solution will involve the Legendre polynomials.

φ(r, ϕ) =
∞∑

k=0

ak
Pk(cosϕ)

rk+1

Pl are the Legendre polynomials defined by the Rodriguez formula.

Pl(x) =
1

2ll

( d
dx

)l
(x2 − 1)l (70)

By Equation 27

~n =


1

0

0

+ 2


η(ϕ)

−η̇(ϕ)

0

 ε+


η(ϕ)2

−η(ϕ)∂ϕη(ϕ)

0

 ε2 (71)

where for brevity η ≡ s1 cos(2ϕ)+s2 cos(3ϕ) and ∂ϕη ≡ −2s1 sin(2ϕ)−3s2 sin(3ϕ).
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By Equation 28

~ψk =


−(k + 1)Pk

∂
∂ϕ
Pk(cosϕ)

0

 (72)

Now we have all the information we need to solve the system of equations for

ak and to find the potentials. Computing the first few functions u
(0)
k yields the

result below4

u0
(0)

= −1

u1
(0)

= −2c(ϕ)

u2
(0)

= −
3

4
(1 + 3c(2ϕ))

u3
(0)

= −
1

2
(3c(ϕ) + 5c(3ϕ))

u4
(0)

= −
5

64
(9 + 20c(2ϕ) + 35c(4ϕ))

u5
(0)

= −
3

64
(30c(ϕ) + 35c(3ϕ) + 63c(5ϕ))

u6
(0)

= −
7

512
(50 + 105c(2ϕ) + 126c(4ϕ) + 231c(6ϕ))

u7
(0)

= −
1

128
(175c(ϕ) + 189c(3ϕ) + 231c(5ϕ) + 429c(7ϕ))

or in matrix form

B{kl} =

0
BBBBBBBBBBBBBBBB@

−1

−2

− 3
4 − 9

4

− 3
2 − 5

2

− 45
64 − 25

16 − 175
64

− 45
32 − 105

64 − 189
64

− 175
256 − 735

512 − x441
256 − 1617

512

− 175
128 − 189

128 − 231
128 − 429

128

1
CCCCCCCCCCCCCCCCA

where u
(0)
k = Bkl cos(lϕ)

Using Equation 33 we obtain the potentials 5

φz = −1

2

P1

r2
+ ε
(9s1

10

P1

r2
+

9s2

7

P2

r3
− 6s1

5

P3

r4
− 48s2

35

P4

r5

)
φ1

s = ε
(1

3

P0

r1
− 4

9

P2

r3

)
φ2

s = ε
( 3

10

P1

r2
− 2

5

P3

r4

)
4For convenience we denote cos(ϕ) by c(ϕ).
5We use the abbreviation Pl(cosϕ) = Pl
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or more explicitly

φz = −c(ϕ)

2r2
+ ε
( 9

10r2
c(ϕ)s1 +

9

28r3
(1 + 3c(2ϕ))s2

− 3

20r4
(3c(ϕ) + 5c(3ϕ))s1 −

3

140r5
(9 + 20c(2ϕ) + 35c(4ϕ))s2

)
φ1

s = ε
( 1

3r
− 1 + 3c(2ϕ)

9r3

)
φ2

s = ε
(3c(ϕ)

10r2
− 3c(ϕ) + 5c(3ϕ)

20r4

)
To see a comparison of this analytical result with the numerical result of the

panel method refer to Figure 12, 13 , 14. The agreement of the results is a good

validation of both the equations for boundary perturbation and the numerical

method developed in the previous sections.
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Figure 10: An illustration of a perturbed sphere (s1 = 0, s2 = 1) moving along the z axis.

The blue arrows represent the exact velocity v computed numerically. The red arrows show

the uncorrected velocity field v(0) corresponding to a sphere (a), and the first order correction

to the velocity field v(0) + εv(1) due to the perturbation(ε = 0.1)(b). Adding the first order

correction improves the fit with the numerically computed velocity.
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Figure 11: First order boundary perturbation theory (red) fails for large perturbations (s1 =

1, s2 = 0).
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Figure 12: Comparison of the results of 1st order perturbation (red) and the numerical

method(blue) for φz (ż = 1). 37
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Figure 13: Comparison of the results of 1st order perturbation (red) and the numerical

method(blue) for φs
1 (ṡ1 = 1). 38
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Figure 14: Comparison of the results of 1st order perturbation (red) and the numerical

method(blue) for φs
2 (ṡ2 = 1). 39



6 Gaits, Displacement and Rotation

Mason and Burdick [3] have found that for a two dimensional amoeba-like body

with surface undulations governed by

F (θ, s) = 1 + ε (s1 cos 2θ + s2 cos 3θ) (73)

the velocity of the centroid is

vc = ε2µṡ1s2x̂+O(ε3) (74)

where µ = (2πr2
0ρ)/(M + πr2

0ρ)

s
2

s
1

F(θ, s)

Figure 15: 2D amoeba surface variation modes

It is much harder to find an explicit form of the governing motion in the three

dimensional case due to the complexity of the potentials computed using the

boundary perturbation method.It will suffice to considering only the numerical

results.

It is expected that a 3D body moves slower than a two dimensional one, since

the fluid is not restricted to a single plain but can ”escape” by flowing in the

extra dimension available, thus reducing its propulsive effect on the body.

We will study forward motion gaits and turning gaits for a three dimensional

amoeba-like object. Note that a 2D amoeba corresponds to several 3D amoebas in
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Figure 16: Computer animation of the forward gait for rotationally symmetric amoeba,

forward gait for planar amoeba and turning gait with 5 frames over a single oscillation.
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the sense that there are more than one modes of surface variation corresponding

to the same 2D mode. Here are two examples:

1. Planar amoeba

F = 1 + ε sinϕ (s1 cos 2θ + s2 cos 3θ) (75)

2. Rotationally symmetric amoeba:

F = 1 + ε(s1 cos 2ϕ+ s2 cos 3ϕ) (76)

where s1 and s2 evolve in time like

s1 = sin t s2 = cos t

The two possibilities and the resulting displacement over a single period of

2π are shown on Figure 17. The rotationally symmetric amoeba makes a huge

backward dip before moving forward. This oscillation is related to the fact that

the deformation of the body shifts the center of mass. The origin of FB moves

so as to conserve the position of the center of mass. In the case of the rotational

symmetry there is more moving mass concentrated around the periphery and

hence the effect is much more pronounced.

A turning gait may be designed by propagating waves around the surface

of the body. Instead of using a spherical body we will choose one that has an

ellipsoid surface in order to make turning apparent:

F0 = (cos 2θ sin 2ϕ+ 0.3 sin 2θ sin 2ϕ+ cos 2ϕ)−
1
2 (77)

Turning gait:

F = F0 + ε sin(s1 + 4θ) sinφ (78)

and let s1 = 3t. The resulting motion is shown on Figure 18.
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Figure 17: Planar and rotationally symmetric modes of forward motion. The figure depicts

the two modes of surface variation of a spherical amoeba. The plot compares the displace-

ment of the two 3D gaits with the 2D gait for ε = 0.1.
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Figure 18: Rotation in the case of a 2D (dashed) and 3D body.

Surprisingly the rotational displacement in the three dimensional case is larger,

hinting that the fluid alone cannot account for this rotation. The effect of turning

without any bearing point conserving angular momentum at zero, is similar to

the ability of cats to turn around in midair and always fall on their feet. The

effect is stronger in three dimensions since there is more mass that can be moved

in the periphery than in two dimensions.

It is important to mention the issue of convergence here - the program requires

at least a second order of triangulation in order to lead to reasonable results.

In the 3D case the number of panels on the surface of the body is quadratic

in their characteristic size. Therefore, reducing the size of the panel leads to a

quadratic increase in the number of panels, which on the other hand leads to a

quadruple increase in running time (as mentioned earlier our algorithm is O(N2)

where N is the number of surface triangles). Thus in the three dimensional case

it is hard to obtain results as accurate in the 2D case. Figure 6 illustrates the

sequence of displacement curves in the case of the rotationally symmetric amoeba

and the planar amoeba, obtained by applying higher order of triangulation each
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Figure 19: A sequence of displacement curves for planar and rotational amoeba generated

by increasing the number of surface triangles.

time. It seems that in our case, 2nd or 3rd order triangulation is enough to obtain

reasonably accurate solutions.

We have already validated the code by comparing its output with the ana-

lytical solution of perturbation theory. Since we know the solutions to the 2D

problem [3], we have another possibility to validate the 3D code by checking if

it leads to the same results in the limit, where we have a very long cylindrical

amoeba. In this case, the results we obtain must be the same as the results of

the two dimensional code. We stretch the amoeba so that the solution tends to

the 2D case by converting it into a cylinder and letting the height to diameter

ratio H/D go to infinity (Figure 20).

Unfortunately, the simulations depicted on these figures suffer from a seri-

ous deficiency. The triangulations scheme is inadequate for elongated bodies,

triangles further from the center are much bigger than those close to the center.

In the case of the cylindrical amoeba, we obtain what we would expect, as

the height of the amoeba grows the displacement tends to that of a 2D amoeba.

Figure 20 shows the convergence of the trajectory of the displacement of a cylinder

to the 2D amoeba solution as H/D increases. This is a separate and independent
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confirmation of the validity of our code.

Another way to elongate the amoeba is to stretch it into an ellipsoid (Figure

21).
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Figure 20: Comparison of the 2D displacement curve (dashed) with the 3D displacement for

a cylindrical amoeba of height to diameter ratios 1/3, 1/2, 1, 2, 3.
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Figure 21: Comparison of the 2D displacement curve (dashed) with the 3D displacement for

an ellipsoidal amoeba of eccentricity 1/3, 1/2, 1, 2, 3. In the case of the ellipsoidal shape

elongating the body does not lead to convergence with the 2D solution - elongating the body

makes its displacement lower. The reason for this is that the diameter decreases with height.
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7 Control

So far we have focused on designing a program that outputs the motion of the

swimmer given how its shape varies. In this part we will briefly outline sugges-

tions for a method that will allow us to do the reverse - output the shape changes

of the body given the desired trajectory. The connection is given by:

g−1ġ = −Aṡ (79)

In the case where A is a square non-singular matrix it may be inverted to obtain:

ṡ = A−1(s)g−1ġ

ṡ = (gA(s))−1ġ (80)

A will be a square matrix if and only if the number of shape variables is equal

to the number of group variables. The above differential equation may then be

evolved in time to obtain how the shape variables should change in order for the

body to follow a trajectory defined by g(t). This simple method will suffer from

two limitations.

First, the connection may become singular at some point. Second, the dif-

ferential equation that we will need to solve may lead to values of s that are

not allowed and lead to non-physical solutions, for instance the radius of the

body cannot be negative. These limitations reduce the applicability of the above

formula.

Another possibility to control is to design turning and forward gaits that would

allow us to roughly steer the body according to the changes in the direction of

the trajectory. We will steer the body in a plane by expressing the shape changes

as the superposition of two components.

s(t) = sf (t) + sr(t) (81)

where sf is the forward motion gait which leads to forward displacement over

a single undulation, and sr is the turning gait which leads to a net rotation
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Figure 22: Implementation of the adiabatic approximation for a three-link simmer consisting

of three ellipses that can move relative to each other [2].The swimmer achieves motion by

varying the two angles θ1 and θ2. The desired trajectory is the green curve, and the actual

trajectory of the body center of mass is the red curve. It is clear from the graphs that as the

scale of each oscillation decreases relative to the scale of the trajectory, we obtain a better

fit with the desired trajectory.

over a single undulation.Unfortunately due to the non-linearity of the problem a

superposition of the two gaits will not lead to motion in the desired direction.

Instead we will employ an adiabatic approximation. Let the forward gait be
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given by the real part of the rapidly oscillating function

sf = Aeiωt (82)

By introducing some constant deformation B to the body we cause a deviation

from the forward direction.

s = Aeiωt +B (83)

Now instead of letting B be constant in time, we will start changing it in such

a way that we follow a curved trajectory. In the adiabatic approximation we

assume that Ḃ is negligible, i.e. over the period of a single surface undulation B

may be assumed constant.

In the case of potential flow the motion is time scale invariant. Thus it is

convenient to introduce dτ = ω dt

s = Aeiτ +B (84)

Set B at some constant value and compute the displacement δ and rotation

β from the forward direction ( defined as the direction in which the body moves

at B = 0). The average velocity and curvature will then be

< v >=
δ

T
=
ωδ(B)

2π
< κ >=

β(B)

δ(B)

We compute < κ > for several values B, and applying a polynomial fit we

may compute the inverse function, i.e. B as a function of < κ >.

B = P (< κ >)

We want the body to follow a certain predefined trajectory

~r(t) = (x(t), y(t))

where v(t) and κ(t) are the velocity and the curvature along the trajectory.

v(t) = (ẋ2 + ẏ2)1/2 κ(t) =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
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In the adiabatic approximation we may ignore the contribution of Ḃ to ṡ,

so we expect the same behavior as if Ḃ were zero and match < v >= v and

< κ >= κ and solve for ω and B.

B(t) = P (κ) ω(t) = 2π
v

δ(B)

This completes the computation of the shape variables as a function of time

s = Aei
R t
0 ω(t′) dt′ +B(t) (85)

This method will only work well for smoothly varying trajectories, where the

specific dimension of the trajectory is much larger than the displacement per unit

period. Although small deviations from the trajectory during each oscillation will

exist, we prefer this method since in general we are only interested reaching the

destination point from the departure point without worrying about the trajectory.

In the adiabatic approximation we have assumed that the body oscillates

rapidly in a time scale too small for any changes along the trajectory to take

place. Unfortunately, rapidly swimming macroscopic bodies shed vorticity, and

it is necessary to include this effect to develop a more realistic model of the

motion.

8 Conclusion

We have shown how boundary perturbation theory can be used to compute the

flow around a general class of deformable bodies. We have implemented a numer-

ical algorithm to compute the motion of a deformable body in three dimensions.

We have looked at several types of surface undulations that lead to forward or

turning motion. We have suggested ways to control the motion of the body by

varying the shape in such a way that the body follows a predefined trajectory.

In our analysis we have assumed potential flow, which is the solution to the

Navier-Stokes equation for very high Reynolds numbers (Re � 1). It would

52



be illuminating to analyze fluids on the other side of the spectrum (Re � 1),

where the Stokes flow approximation holds and compare the results with those

of potential flow. For a microscopic amoeba the relevant equations are those of

creeping flow. Creeping flow can be analyzed using similar techniques to those

used for potential flow in this paper, and it may be a first step in understanding

the role of viscosity on the motion.
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A Code

We implement the numerical method in MATLAB. The code consists of 12 files.

The main file that we use is driver. The generic form of running driver is

>>driver(order of triangulation, number of periods, ’filename’);

For example the command

>>driver(2, 1, ’filename’);

would output the results in ’filename’ using 2nd order triangulation over a single

period. To encode the surface variation we need to change the files surface.m for

the spacial variation and shape var.m for the temporal variation. The output is

given in the form

t x y z Rxx Rxy Rxz Ryx Ryy Ryz Rzx Rzy Rzz σ1...σN

where x, y and z indicate the position and R the rotation of the body at time t.

The elements σi indicate the source density on panel i. σ is used to visualize the

flow.

All the files and the hierarchy of the code are shown on Figure 23.
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Figure 23: Hierarchy of the MATLAB code
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A.1 admass.m
function [Id, IdAd] = admass(An, Phi, s, n, zcg, face, verts, del, M, Nf)

% Dzhelil Rufat 31 March 2005

% -----------------INPUT---------------------------------------------------

%

% An(i,j) normal velocity induced at Ci due

% to a constant source distribution at panel j

% Expressed w.r.t a frame attached to the panel i

%

% Phi potential function

%

% s shape variables

%

% n normal vectors to panels

%

% zcg position of the control points relative to c.o.m

%

% face, verts verts is in spherical coordinates

%

% del area of panels

%

% M mass of body (volume*relative density)

%

% Nf number of panels(faces)

%

% -------------------------------------------------------------------------

% -----------------INTERNAL VARIABLES--------------------------------------

%

% vfn boundary conditions, i.e., normal velocity

% of the fluid at the control points

%

% sigma source distribution due to a given vfn

%

%--------------------------------------------------------------------------

% -----------------OUTPUT--------------------------------------------------

%

% Id, IdAd added inertia matrices

%

% -------------------------------------------------------------------------

%calculating boundary conditions

% translations at unit speed in the BODY fixed frame

vel_x = n(:,1);

vel_y = n(:,2);

vel_z = n(:,3);

%angular rotation at unit speed

vel_u = zcg(:,2).*n(:,3) - zcg(:,3).*n(:,2); %around x axis

vel_v = zcg(:,3).*n(:,1) - zcg(:,1).*n(:,3); %around y axis

vel_w = zcg(:,1).*n(:,2) - zcg(:,2).*n(:,1); %around z axis

% shape changes at unit speed

[F, d1F,d2F, d3F] = surface(verts(:,1), verts(:,2), s);

for i = 1:Nf

velc_1(i,:) = (d1F(face(i,1),:) + d1F(face(i,2),:) + d1F(face(i,3),:))/3;

velc_2(i,:) = (d2F(face(i,1),:) + d2F(face(i,2),:) + d2F(face(i,3),:))/3;

velc_3(i,:) = (d3F(face(i,1),:) + d3F(face(i,2),:) + d3F(face(i,3),:))/3;

end

vel_s1 = velc_1(:,1).*n(:,1) + velc_1(:,2).*n(:,2) + velc_1(:,3).*n(:,3);

vel_s2 = velc_2(:,1).*n(:,1) + velc_2(:,2).*n(:,2) + velc_2(:,3).*n(:,3);

vel_s3 = velc_3(:,1).*n(:,1) + velc_3(:,2).*n(:,2) + velc_3(:,3).*n(:,3);

% Source density distribution

inv_An = inv(An);

%------------------------------------------------

% make source distributions global to compute field

% see rk4 file

global sigma_x; global sigma_y; global sigma_z;

global sigma_u; global sigma_v; global sigma_w;

global sigma_s1; global sigma_s2; global sigma_s3;

%-------------------------------------------------

%compute source distributions

sigma_x = inv_An*vel_x;

sigma_y = inv_An*vel_y;

sigma_z = inv_An*vel_z;

sigma_u = inv_An*vel_u;

sigma_v = inv_An*vel_v;

sigma_w = inv_An*vel_w;

sigma_s1 = inv_An*vel_s1;

56



sigma_s2 = inv_An*vel_s2;

sigma_s3 = inv_An*vel_s3;

% compute potential functions

phi_x = Phi*sigma_x;

phi_y = Phi*sigma_y;

phi_z = Phi*sigma_z;

phi_u = Phi*sigma_u;

phi_v = Phi*sigma_v;

phi_w = Phi*sigma_w;

phi_s1 = Phi*sigma_s1;

phi_s2 = Phi*sigma_s2;

phi_s3 = Phi*sigma_s3;

% compute the added masses

% BODY fixed frame

m_xx = sum(phi_x.*vel_x.*del);

m_yy = sum(phi_y.*vel_y.*del);

m_zz = sum(phi_z.*vel_z.*del);

m_uu = sum(phi_u.*vel_u.*del);

m_vv = sum(phi_v.*vel_v.*del);

m_ww = sum(phi_w.*vel_w.*del);

m_xy = 0.5*sum((phi_x.*vel_y + phi_y.*vel_x).*del);

m_xz = 0.5*sum((phi_x.*vel_z + phi_z.*vel_x).*del);

m_xu = 0.5*sum((phi_x.*vel_u + phi_u.*vel_x).*del);

m_xv = 0.5*sum((phi_x.*vel_v + phi_v.*vel_x).*del);

m_xw = 0.5*sum((phi_x.*vel_w + phi_w.*vel_x).*del);

m_yz = 0.5*sum((phi_y.*vel_z + phi_y.*vel_z).*del);

m_yu = 0.5*sum((phi_y.*vel_u + phi_y.*vel_u).*del);

m_yv = 0.5*sum((phi_y.*vel_v + phi_y.*vel_v).*del);

m_yw = 0.5*sum((phi_y.*vel_w + phi_y.*vel_w).*del);

m_zu = 0.5*sum((phi_z.*vel_u + phi_u.*vel_z).*del);

m_zv = 0.5*sum((phi_z.*vel_v + phi_v.*vel_z).*del);

m_zw = 0.5*sum((phi_z.*vel_w + phi_w.*vel_z).*del);

m_uv = 0.5*sum((phi_u.*vel_v + phi_v.*vel_u).*del);

m_uw = 0.5*sum((phi_u.*vel_w + phi_w.*vel_u).*del);

m_vw = 0.5*sum((phi_v.*vel_w + phi_w.*vel_v).*del);

m_x1 = 0.5*sum((phi_x.*vel_s1 + phi_s1.*vel_x).*del);

m_y1 = 0.5*sum((phi_y.*vel_s1 + phi_s1.*vel_y).*del);

m_z1 = 0.5*sum((phi_z.*vel_s1 + phi_s1.*vel_z).*del);

m_u1 = 0.5*sum((phi_u.*vel_s1 + phi_s1.*vel_u).*del);

m_v1 = 0.5*sum((phi_v.*vel_s1 + phi_s1.*vel_v).*del);

m_w1 = 0.5*sum((phi_w.*vel_s1 + phi_s1.*vel_w).*del);

m_x2 = 0.5*sum((phi_x.*vel_s2 + phi_s2.*vel_x).*del);

m_y2 = 0.5*sum((phi_y.*vel_s2 + phi_s2.*vel_y).*del);

m_z2 = 0.5*sum((phi_z.*vel_s2 + phi_s2.*vel_z).*del);

m_u2 = 0.5*sum((phi_u.*vel_s2 + phi_s2.*vel_u).*del);

m_v2 = 0.5*sum((phi_v.*vel_s2 + phi_s2.*vel_v).*del);

m_w2 = 0.5*sum((phi_w.*vel_s2 + phi_s2.*vel_w).*del);

m_x3 = 0.5*sum((phi_x.*vel_s3 + phi_s3.*vel_x).*del);

m_y3 = 0.5*sum((phi_y.*vel_s3 + phi_s3.*vel_y).*del);

m_z3 = 0.5*sum((phi_z.*vel_s3 + phi_s3.*vel_z).*del);

m_u3 = 0.5*sum((phi_u.*vel_s3 + phi_s3.*vel_u).*del);

m_v3 = 0.5*sum((phi_v.*vel_s3 + phi_s3.*vel_v).*del);

m_w3 = 0.5*sum((phi_w.*vel_s3 + phi_s3.*vel_w).*del);

% obtain inertia without fluid

[L_gg, L_gs] = inertia(verts, face, Nf, s);

%assign total inertia

Id = M*L_gg + [m_xx m_xy m_xz m_xu m_xv m_xw; ...

m_xy m_yy m_yz m_yu m_yv m_yw; ...

m_xz m_yz m_zz m_zu m_zv m_zw; ...

m_xu m_yu m_zu m_uu m_uv m_uw; ...

m_xv m_yv m_zv m_uv m_vv m_vw; ...

m_xw m_yw m_zw m_uw m_vw m_ww; ...

];

IdAd = M*L_gs + [m_x1, m_x2, m_x3; ...

m_y1, m_y2, m_y3; ...

m_z1, m_z2, m_z3; ...

m_u1, m_u2, m_u3; ...

m_v1, m_v2, m_v3; ...

m_w1, m_w2, m_w3; ...

];
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A.2 centroid.m
function [cntr, vtot, del, cg, n, t1, t2] = centroid(vert, face, f);

%Dzhelil Rufat, October 28th, 2004

%[cntr, vtot, del, cg, n, t1, t2] = centroid(vert, face, f)

%Calculates motion of centroid

%------------------INPUT---------------------------------------------------

% vert - vertice coordinates relative to body frame

% face - the face matrix

% f - number of faces

%------------------OUTPUT--------------------------------------------------

% cntr coordinates of centoroid relative to body frame

% vtot volume of body

% del panel areas

% cg panel centers

% t1, t2 tangentials to panel surfaces

% n normal to panel surfaces

%-----------------------------------------------------------------------

for i=1:f,

TRI=[vert(face(i,1),:);vert(face(i,2),:);vert(face(i,3),:)];

%collocation points

cg(i,:)= mean(TRI);

%side of triangle

A = TRI(2,:)-TRI(3,:); a=norm(A);

B = TRI(3,:)-TRI(1,:); b=norm(B);

C = TRI(1,:)-TRI(2,:); c=norm(C);

%normal vectors

N = cross(A,B);

n(i,:) = N/norm(N);

%tangential vectors

t1(i,:) = A/a;

t2(i,:) = cross(n(i,:),t1(i,:));

%area

del(i,:) = 1/4*sqrt((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)));

end

CNTR = 3/4*cg;

VOLUME = 1/3*del.*dot(n,cg,2);

vtot = sum(VOLUME);

for i=1:3

cntr(i) = sum(CNTR(:,i).*VOLUME)/vtot;

end

A.3 connection.m
function A = connection(s, sdot, M, face, zcg, t1, t2, n, del, Nf, verts, Nv);

% Computes the hydromechanical connection which relates the shape changes

% to the group motion

%vertice coordinates in cartesian coordinates

vertc = surface(verts(:,1),verts(:,2), s);

%compute the influence of panel i to panel j

[An, Phi] = influence(zcg, face, Nf, vertc, Nv, n, t1, t2);

% non-dimensional added inertias

[Id, IdAd] = admass(An, Phi, s, n, zcg, face, verts, del, M, Nf);

% connection

A = inv(Id)*IdAd * sdot’;

A.4 driver.m
function driver(d, P, filename )

% D Rufat, Feb 14, 2005

% d - depth of discretization

% P - number of periods

% filename - name under which to save results in current director

tic

% solve rk4 - fixed time steps

% time span
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h = 2*pi/50; t = 0:h:2*pi*P; nbt = length(t);

% initial conditions

g = [ 0 0 0, ...

1 0 0, ...

0 1 0, ...

0 0 1];

% source distribution

%sigma = zeros(nbt, N);

%density of body relative to fluid

density = 1;

% M - mass of body

[verts, face, Nv, Nf] = triangulate(d);

vertc0 = surface(verts(:,1),verts(:,2), [0,0,0]);

[cntr, vtot, del, zcg0, n, t1, t2] = centroid(vertc0, face, Nf);

M = density*vtot;

% call rk4

for i = 1:nbt-1

i

%shape changes

[s, sdot] = shape_var(t(i));

% discretization of body

vertc = surface(verts(:,1),verts(:,2), s);

[cntr, vtot, del, zcg, n, t1, t2] = centroid(vertc, face, Nf);

[g(i+1,:) sigma(i+1,:)]= ...

rk4(t(i),g(i,:),h,M,face,zcg,t1,t2,n,del,Nf,verts,Nv);

end

%saveresults

data = [t’ g sigma];

eval([ ’save ’ filename ’.txt data -ASCII’ ]);

toc

A.5 inertia.m
function [L_gg, L_gs] = inertia(verts, face, Nf, s);

%[L_gg, L_gs] = inertia(verts, face, Nf, s);

%Dzhelil Rufat, March 15th, 2005

%Calculates moment of inertia with respect to Body frame

%------------------INPUT---------------------------------------------------

% verts - vertice spherical coordinates [theta, phi]

% face - face matrix

% Nf - number of collocation points

% s - shape variables

%------------------INTERNAL VARIABLES--------------------------------------

% I - moment of inertia with respect to Body frame

%------------------OUTPUT--------------------------------------------------

% L_gg, L_gs - locked inertia matrix of the deformable body in the

% absence of the fluid

%--------------------------------------------------------------------------

%The moment of inertia of a tetrahedron

% I = [Ixx, Ixy, Ixz;

% Iyx, Iyy, Iyz;

% Izx, Izy, Izz;]

the = verts(:,1); phi=verts(:,2);

[P, d1P, d2P, d3P] = surface(the, phi, s);

I = [0 0 0 0 0 0];

for i=1:Nf,

TRI=[P(face(i,1),:);P(face(i,2),:);P(face(i,3),:)];

%vertices of tetrahedron

v0=[0, 0, 0];

v1=TRI(1,:); v2=TRI(2,:); v3=TRI(3,:);

%evaluate the inertia integral due to each surface panel

I = I + inertia_integ(v1,v2,v3);

end

[cntr, V] = centroid(P, face, Nf);

I = I/V; %moment of inertia per unit volume

Ixx=I(1);Iyy=I(2);Izz=I(3);Iyz=I(4);Ixz=I(5);Ixy=I(6);

x=cntr(1);y=cntr(2);z=cntr(3);

%calculate iduced velocity of centroid due to changes in shape variables
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h = 1e-6;

%fix s1_dot at 1

CNTR1 = centroid(P + h*d1P, face, Nf);

%fix s2_dot at 1

CNTR2 = centroid(P + h*d2P, face, Nf);

%fix s3_dot at 1

CNTR3 = centroid(P + h*d3P, face, Nf);

%V = xidot + SUM(ai*wi) + SUM(bi*si);

a1=[ 0 -z y];

a2=[ z 0 -x];

a3=[-y x 0];

b1 = (CNTR1 - cntr)/h;

b2 = (CNTR2 - cntr)/h;

b3 = (CNTR3 - cntr)/h;

%locked inertia matrix

L_gg =...

[

1 0 0 a1(1) a2(1) a3(1)

0 1 0 a1(2) a2(2) a3(2)

0 0 1 a1(3) a2(3) a3(3)

a1(1) a1(2) a1(3) Ixx Ixy Ixz

a2(1) a2(2) a2(3) Ixy Iyy Iyz

a3(1) a3(2) a3(3) Ixz Iyz Izz

];

L_gs = ...

[

b1(1) b2(1) b3(1)

b1(2) b2(2) b3(2)

b1(3) b2(3) b3(3)

dot(a1,b1) dot(a1,b2) dot(a1,b3)

dot(a2,b1) dot(a2,b2) dot(a2,b3)

dot(a3,b1) dot(a3,b2) dot(a3,b3)

];

A.6 inertia integ.m
function Int=inertia_integ(v1,v2,v3)

%evaluate the integrals S (x^2+y^2)z dA & S xyz dA

% INPUT

% v1, v2, v3 - vertices

%OUTPUT

% Int: [Ixx Iyy Izz Iyz Ixz Ixy]

%

o=v1; a=v2-v1; b=v3-v1;

axb = cross(a,b);

n = axb/norm(axb);

aa=dot(a,a); bb=dot(b,b); ab=dot(a,b);

oo=dot(o,o); oa=dot(o,a); ob=dot(o,b);

for i=1:3

A3 = aa*a(i)-a(i)^3;

A2 = aa*b(i)+2*ab*a(i)-3*a(i)^2*b(i);

A1 = bb*a(i)+2*ab*b(i)-3*b(i)^2*a(i);

A0 = bb*b(i)-b(i)^3;

B2 = (aa-3*a(i)^2)*o(i)+2*oa*a(i);

B1 = 2*ab*o(i)-6*a(i)*b(i)*o(i)+2*oa*b(i)+2*ob*a(i);

B0 = (bb-3*b(i)^2)*o(i)+2*ob*b(i);

C1 = oo*a(i)+2*oa*o(i)-3*a(i)*o(i)^2;

C0 = oo*b(i)+2*ob*o(i)-3*b(i)*o(i)^2;

D0 = oo*o(i)-o(i)^3;

Int_diag(i)= n(i)*norm(axb)*(...

1/60*(3*A3+A2+A1+3*A0)...

+1/24*(2*B2+B1+2*B0)...

+1/6*(C1+C0)...

+1/2*D0);

end

A3 = a(1)*a(2)*a(3);

A2 = a(1)*a(2)*b(3)+a(1)*b(2)*a(3)+b(1)*a(2)*a(3);
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A1 = b(1)*b(2)*a(3)+b(1)*a(2)*b(3)+a(1)*b(2)*b(3);

A0 = b(1)*b(2)*b(3);

B2 = a(1)*a(2)*o(3)+a(1)*o(2)*a(3)+o(1)*a(2)*a(3);

B1 = (a(1)*b(2)+a(2)*b(1))*o(3)...

+(a(2)*b(3)+a(3)*b(2))*o(1)...

+(a(3)*b(1)+a(1)*b(3))*o(2);

B0 = b(1)*b(2)*o(3)+b(1)*o(2)*b(3)+o(1)*b(2)*b(3);

C1 = o(1)*o(2)*a(3)+o(1)*a(2)*o(3)+a(1)*o(2)*o(3);

C0 = o(1)*o(2)*b(3)+o(1)*b(2)*o(3)+b(1)*o(2)*o(3);

D0 = o(1)*o(2)*o(3);

Int_side= - n*norm(axb)*(...

1/60*(3*A3+A2+A1+3*A0)...

+1/24*(2*B2+B1+2*B0)...

+1/6*(C1+C0)...

+1/2*D0);

%-----DEBUGGING - should be equal to volume

%Int_side(4) = ...

% n(1)*norm(axb)*[o(1)/2+1/6*(a(1)+b(1))];

%-----

Int = [Int_diag, Int_side];

A.7 influence.m
function [An, Phi] = influence(zc, face, Nf, vert, Nv, n, t1, t2)

% --------------------------------------------

% D Rufat 29/01/2005

% [An,Phi] = influence(zc,t,n,del,N)

% -----------------INPUT----------------------

%

% zc position of collocation pts

% face panels

% vert vertice coordinates

% n components of outward normal vectors

% N number of panels

%

% zc, vert and n are w.r.t inertial frame

%

% -----------------OUTPUT-----------------

%

% An(i,j) normal velocities induced at Ci

% due to a constant source distribution at panel j

% Expressed w.r.t a frame attached to the panel i

%

% Phi(i,j) potential function iduced by panel j on panel i

%

% -----------------------------------------

for j=1:Nf

%------------TRANSFORM TO A COORDINATE SYTEM ATTACHED TO PANEL J----------

%translate origin to the collocation point at j

%find vertices of jth triangle

vj= [vert(face(j,1),:);

vert(face(j,2),:);

vert(face(j,3),:);];

%translate vertices of triangle

vj = vj-ones(3,1)*zc(j,:);

%translate collocation points

cj = zc-ones(Nf,1)*zc(j,:);

%rotate to a coordinate sytem of the j-th panel

%vertices (quantities below are scalars)

x1=t1(j,1)*vj(1,1)+t1(j,2)*vj(1,2)+t1(j,3)*vj(1,3);

y1=t2(j,1)*vj(1,1)+t2(j,2)*vj(1,2)+t2(j,3)*vj(1,3);

x2=t1(j,1)*vj(2,1)+t1(j,2)*vj(2,2)+t1(j,3)*vj(2,3);

y2=t2(j,1)*vj(2,1)+t2(j,2)*vj(2,2)+t2(j,3)*vj(2,3);

x3=t1(j,1)*vj(3,1)+t1(j,2)*vj(3,2)+t1(j,3)*vj(3,3);

y3=t2(j,1)*vj(3,1)+t2(j,2)*vj(3,2)+t2(j,3)*vj(3,3);

%collocation points (quantities are Nf sized vectors)

x = t1(j,1)*cj(:,1)+t1(j,2)*cj(:,2)+t1(j,3)*cj(:,3);

y = t2(j,1)*cj(:,1)+t2(j,2)*cj(:,2)+t2(j,3)*cj(:,3);

z = n(j,1)*cj(:,1)+ n(j,2)*cj(:,2)+ n(j,3)*cj(:,3);

%normal vectors

nx = t1(j,1)*n(:,1)+t1(j,2)*n(:,2)+t1(j,3)*n(:,3);

ny = t2(j,1)*n(:,1)+t2(j,2)*n(:,2)+t2(j,3)*n(:,3);

nz = n(j,1)*n(:,1)+ n(j,2)*n(:,2)+ n(j,3)*n(:,3);
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z(j)=z(j)+1e-16;

%--------------CALCULATES THE INFLUENCE IN NEW COORDINATE SYSTEM-----------

%check if point is inside the triangle

xa=x2-x1; xb=x3-x1; xp=x-x1;

ya=y2-y1; yb=y3-y1; yp=y-y1;

det=xa*yb-xb*ya;

S = ( yb*xp-xb*yp)/det;

T = (-ya*xp+xa*yp)/det;

for i=1:Nf

s=S(i); t=T(i);

%points are inside

if (s>0 && t>0 && s+t<1) delta(i,:)=2*pi;

%points are outside

else delta(i,:)=0;

end;

end;

%side lengths

d12 = sqrt((x2-x1)^2 + (y2-y1)^2);

d23 = sqrt((x3-x2)^2 + (y3-y2)^2);

d31 = sqrt((x1-x3)^2 + (y1-y3)^2);

%side slopes

C12 = (x2-x1)/d12; S12=(y2-y1)/d12;

C23 = (x3-x2)/d23; S23=(y3-y2)/d23;

C31 = (x1-x3)/d31; S31=(y1-y3)/d31;

%arcs associated with perpendiculars P to each side

s1_12=(x1-x)*C12+(y1-y)*S12;

s1_23=(x2-x)*C23+(y2-y)*S23;

s1_31=(x3-x)*C31+(y3-y)*S31;

s2_12=(x2-x)*C12+(y2-y)*S12;

s2_23=(x3-x)*C23+(y3-y)*S23;

s2_31=(x1-x)*C31+(y1-y)*S31;

%signed perpendicular distances

R12 = (x1-x)*S12 -(y1-y)*C12;

R23 = (x2-x)*S23 -(y2-y)*C23;

R31 = (x3-x)*S31 -(y3-y)*C31;

%distances from point P to the corner points of the triangle

r1 = sqrt((x-x1).^2 + (y-y1).^2 + z.^2);

r2 = sqrt((x-x2).^2 + (y-y2).^2 + z.^2);

r3 = sqrt((x-x3).^2 + (y-y3).^2 + z.^2);

Q12 = log((r1+r2+d12)./(r1+r2-d12));

Q23 = log((r2+r3+d23)./(r2+r3-d23));

Q31 = log((r3+r1+d31)./(r3+r1-d31));

J12 = atan2(R12.*abs(z).*(r1.*s2_12-r2.*s1_12),r1.*r2.*R12.^2+z.^2.*s2_12.*s1_12);

J23 = atan2(R23.*abs(z).*(r2.*s2_23-r3.*s1_23),r2.*r3.*R23.^2+z.^2.*s2_23.*s1_23);

J31 = atan2(R31.*abs(z).*(r3.*s2_31-r1.*s1_31),r3.*r1.*R31.^2+z.^2.*s2_31.*s1_31);

% BUGG found on Feb-15-2005

%V is defined as -grad phi and positive rotations are anticlockwise

phi = +R12.*Q12 + R23.*Q23 + R31.*Q31 + abs(z).*(J12+J23+J31-delta);

vx = +S12.*Q12 + S23.*Q23 + S31.*Q31;

vy = -C12.*Q12 - C23.*Q23 - C31.*Q31;

vz = -sign(z).*(J12+J23+J31-delta);

%--------------------RESULTS-------------------------------------------

Phi(:,j)= phi;

An (:,j)= nx.*vx+ ny.*vy+ nz.*vz;

end

A.8 rk4.m
function [g1, sigma] = rk4(t0,g0,h,M,face,zcg,t1,t2,n,del,Nf,verts,Nv)

% D Rufat, February 16, 2005

% Fourth order fixed time step Runge-Kutta scheme to advance motion in

% time.

% shape variables

[s_0, sdot_0] = shape_var(t0);

[s_1, sdot_1] = shape_var(t0+h/2);

[s_2, sdot_2] = shape_var(t0+h);
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% connection

A0 = connection(s_0, sdot_0, M, face, zcg, t1, t2, n, del, Nf, verts, Nv);

A1 = connection(s_1, sdot_1, M, face, zcg, t1, t2, n, del, Nf, verts, Nv);

A2 = connection(s_2, sdot_2, M, face, zcg, t1, t2, n, del, Nf, verts, Nv);

K1 = vel_fun(A0,g0);

K2 = vel_fun(A1,g0 + h*K1/2);

K3 = vel_fun(A1,g0 + h*K2/2);

K4 = vel_fun(A2,g0 + h*K3);

g1 = g0 + h*(K1+2*K2+2*K3+K4)/6;

%-------------import source distributions----------------

global sigma_x; global sigma_y; global sigma_z;

global sigma_u; global sigma_v; global sigma_w;

global sigma_s1; global sigma_s2; global sigma_s3;

sigma = (0*sigma_x*A2(1) + 0*sigma_y*A2(2) + 0*sigma_z*A2(3) + ...

0*sigma_u*A2(4) + 0*sigma_v*A2(5) + 0*sigma_w*A2(6) +...

sigma_s1*sdot_2(1) + sigma_s2*sdot_2(2) + sigma_s3*sdot_2(3))’;

A.9 shape var.m
function [s, sdot] = shape_var(t)

% Prescribe shape changes

% ---------------INPUT-----------

% t - time

% --------------OUTPUT------------

% s = [s1, s2, s3] - shape variables

% sdot= [s1dot, s2dot, s3dot] - time derivatives

%---------------------------------

s1 = sin(t);

s2 = cos(t);

s3 = 0*t;

s1dot = cos(t);

s2dot = -sin(t);

s3dot = 0*t;

s = [s1, s2, s3];

sdot = [s1dot, s2dot, s3dot];

A.10 surface.m
function [P, d1P, d2P, d3P] = surface(theta, phi, s)

% Prescribe shape changes

% [F, d1F, d2F, d3F] = surface(theta, phi, s1, s2, s3)

% ---------------INPUT-----------

% s1, s2,s3 - shape variables

% theta, phi - angle parameter in polar coordinates fixed to center

% of body frame

% --------------OUTPUT------------

% P - coordinates in Body Frame

% d1P - derivative with respect to 1st mode variable

% d2P - derivative with respect to 2nd mode variable

% d3P - derivative with respect to 3rd mode variable

%---------------------------------

s1=s(:,1);s2=s(:,2);s3=s(:,3);

%---------------------------------

%MODES:

F0 = 1;

F1 = 0.1*s1*cos(2*phi);

F2 = 0.1*s2*cos(3*phi);

F3 = 0;

%SHAPE

F = F0 + F1 + F2 + F3;

%DERIVATIVES

d1F = 0.1*cos(2*phi);

d2F = 0.1*cos(3*phi);

d3F = 0;

%-----------------------

[ P(:,1), P(:,2), P(:,3)]=sph2cart(theta,pi/2-phi, F);
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[d1P(:,1),d1P(:,2),d1P(:,3)]=sph2cart(theta,pi/2-phi, d1F);

[d2P(:,1),d2P(:,2),d2P(:,3)]=sph2cart(theta,pi/2-phi, d2F);

[d3P(:,1),d3P(:,2),d3P(:,3)]=sph2cart(theta,pi/2-phi, d3F);

%-----------------------

A.11 triangulate.m
function [vert, face, v, f] = triangulate(d)

% ---------------------------------------------------------

% D Rufat, 30 March 2005

% -----------------INPUT-----------------------------------

%

% d depth of discretization

%

% -----------------OUTPUT----------------------------------

% vert - coordinates of vertices in spherical [the, phi]

% face - faces

% v - number of vertices

% f - number of faces

% ----------------------------------------------------------

%icosahedron

GoldRatio = (1+sqrt(5))/2; PHI=2*atan(1/GoldRatio);

for i = 1:10,

if rem(i,2)==1 phi=PHI;

else phi=pi-PHI;

end

vert(i+2,:) = [(i-1)*pi/5, phi];

end

vert(1,:) = [0, 0];

vert(2,:) = [0, pi];

for i=1:4

face(4*i-3,:)=[2*i+1, 2*i+2, 2*i+3];

face(4*i-2,:)=[2*i+2, 2*i+4, 2*i+3];

face(4*i-1,:)=[1,2*i+1,2*i+3];

face(4*i-0,:)=[2,2*i+4,2*i+2];

end

face = [face;

[11, 12, 3];

[3, 12, 4];

[1, 11, 3];

[2, 4, 12];

];

f=20; v=12;

%octahedron

%for i = 1:4,

% vert(i+2,:) = [(i-1)*pi/2, pi/2];

%end

%vert(1,:) = [0, 0];

%vert(2,:) = [0, pi];

%face = [...

% 1 3 4;

% 1 4 5;

% 1 5 6;

% 1 6 3;

% 2 4 3;

% 2 5 4;

% 2 6 5;

% 2 3 6;

% ];

%f=8; v=6;

for depth=1:d,

N=f;

for i=1:N,

TRI=[vert(face(i,1),:);vert(face(i,2),:);vert(face(i,3),:)];

TRI(:,2)=pi/2-TRI(:,2);

[A(1),A(2),A(3)] = sph2cart(TRI(1,1),TRI(1,2),1);

[B(1),B(2),B(3)] = sph2cart(TRI(2,1),TRI(2,2),1);

[C(1),C(2),C(3)] = sph2cart(TRI(3,1),TRI(3,2),1);

c1 = B+C; [p1(1), p1(2),r]=cart2sph(c1(1),c1(2),c1(3));

c2 = C+A; [p2(1), p2(2),r]=cart2sph(c2(1),c2(2),c2(3));

c3 = A+B; [p3(1), p3(2),r]=cart2sph(c3(1),c3(2),c3(3));

TRI(:,2)=pi/2-TRI(:,2);

p1(2)=pi/2-p1(2);p2(2)=pi/2-p2(2);p3(2)=pi/2-p3(2);

%

if face(i,1)==1 | face(i,1)==2

p2(1) = TRI(3,1);
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p3(1) = TRI(2,1);

end

vert(v+1,:)=p1;

vert(v+2,:)=p2;

vert(v+3,:)=p3;

temp(4*i-3,:)= [face(i,1), v+3, v+2];

temp(4*i-2,:)= [face(i,2), v+1, v+3];

temp(4*i-1,:)= [face(i,3), v+2, v+1];

temp(4*i-0,:)= [v+1, v+2, v+3];

v = v+3; f=f+3;

end

face = temp;

end

A.12 vel fun.m
function gdot = vel_fun(A,g)

%compute velocity gdot given connection A and current position g

% g = ( x, y, z, R11, R12, R13, R21, R22, R23, R31, R32, R33)

% A = (Ax, Ay, Az, Au, Av, Aw) (u,v,w angular rotation around x,y,z)

R = [ ...

g(4), g(5), g(6);

g(7), g(8), g(9);

g(10), g(11), g(12);

];

wx=A(4); wy=A(5); wz=A(6);

O = [...

0 -wz wy;

wz 0 -wx;

-wy wx 0];

%derivative of R

D = R*O;

% differential equations

gdot = - [A(1), ...

A(2), ...

A(3), ...

D(1,1), ...

D(1,2), ...

D(1,3), ...

D(2,1), ...

D(2,2), ...

D(2,3), ...

D(3,1), ...

D(3,2), ...

D(3,3)];
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