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Motion Planning for an Articulated Body in a Perfect Planar Fluid∗

Juan B. Melli†, Clarence W. Rowley†, and Dzhelil S. Rufat†

Abstract. Understanding fish-like locomotion as a result of internal shape changes may result in improved un-
derwater propulsion mechanisms. We use a geometric framework to consider the simplified problem
of an articulated two-dimensional body in a potential flow. This paper builds upon the current
geometric theory by showing that although the group of Euclidean transformations is non-Abelian,
certain tools available for Abelian groups may still be exploited, making use of the semidirect-product
structure of this group. In particular, the holonomy in the rotation component may be explicitly
computed as a function of the area enclosed by a path in shape space. We use this tool to develop
open-loop gaits for an articulated body with two shape variables, using plots of the curvature of
the mechanical connection, which relates motion in the shape space to motion of the overall body.
Results from numerical computations of the mechanical connection are compared to theoretical re-
sults assuming the joints are hydrodynamically decoupled. Finally, we consider a simple method for
trajectory tracking in the plane, using a one-parameter family of gaits.
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1. Introduction. In this paper, we study articulated bodies in a potential flow and their
locomotion as a result of internal shape changes. In particular, we seek to answer the following
question: Given a desired motion, what are the changes in shape that will achieve such a
motion?

Fish swimming has been studied for many decades in order to understand the physical
mechanisms involved and ultimately to improve upon conventional methods of underwater
propulsion. The interaction of solid bodies with an ideal fluid was first studied by Kirchhoff
in the 1870’s [7, 9]. In the 1960’s, analytical models by Wu examined the swimming of a
two-dimensional flexible plate with a small amplitude traveling wave [24, 25], while Lighthill
considered the propulsion of slender-body fishes [12, 13, 14, 15]. More recently, Kelly [5, 6]
studied the self-propulsion of fish-like and amoeba-like swimmers in potential and Stokes
flow from a geometric point of view, by viewing the configuration space as a principal fiber
bundle, in which the base space consists of the internal shape variables, and the fibers are
the group of rigid motions of the overall body. The motion along the fiber is related to the
motion in the base space by a principal connection, called the hydromechanical connection,
a term which comes from the geometric mechanics community [19]. These techniques were
used in [8] to study geometric phases in articulated free rigid bodies, and similar techniques
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were used in [21, 23] to study the motion of deformable bodies and articulated rigid bodies
in a fluid, assuming small amplitude motions, and assuming that the individual links were
hydrodynamically decoupled ; that is, that the added inertia of each link is independent of
the position or velocity of the other links. Kanso et al. [4] later formulated the potential
flow problem explicitly as a reduction by stages [1] (although such a formulation was already
implicit in [5]) and accurately computed the added inertia terms using a boundary element
method. Tools from control theory and geometric mechanics have also been used to generate
gaits for locomotion of underwater vehicles [11, 21, 22].

Benefits of the geometric formulation. One of the advantages of formulating the equations
using the structure of a fiber bundle is that one may use the hydromechanical connection to
design swimming gaits to achieve desired motions. In this paper, we use the formulation of
[5, 4] to develop open-loop swimming gaits to achieve arbitrary rotations in two dimensions.
The technique we use is well known for Abelian groups; we show that they may also be used for
the rotation component of the Euclidean group, exploiting the semidirect product structure
SE(2) = SO(2) � R

2, since SO(2) is Abelian. Whereas some previous results were limited to
small amplitude gaits or assumed hydrodynamically decoupled links, our results allow us to
develop finite amplitude gaits and accurately compute the motion. By numerically computing
the curvature of the hydromechanical connection, it becomes possible to develop such gaits
by inspection.

It is well known that fish propulsion relies in part on the shedding of vorticity, for instance,
as demonstrated in the experiments of [3]. Although we ignore the effects of viscosity and
do not model vortex shedding, our model captures the inertial forces associated with fish-like
swimming, which are most important during quick maneuvers. In other words, our model is
not valid as representative of real fish swimming unless maneuvers are performed quickly. We
consider this to be a first step at developing fish-like gaits and plan to incorporate the effects
of vorticity in future models.

This paper is organized as follows. In section 2 we introduce the problem of a three-link
fish-like articulated swimmer in a potential flow. Section 3 includes the geometric framework
necessary to study the present problem and includes a formula for computing the holonomy
in a semidirect product group S = G�V , where G is an Abelian group and V is a vector
space. This theory is applied in section 4 to find open-loop gaits from plots of the curvature of
the local connection to achieve a desired net rotation in the fish-like body. For the three-link
geometry, it is found that the most efficient turning gaits involve motions where the body
is “C”-shaped, rather than “S”-shaped. Further, we investigate different shape geometries
for maneuvering, including the effect of removing the middle link. The curvature plots are
compared to the case where the links are assumed to be hydrodynamically decoupled. We
then show how the curvature plots can be used to generate small-amplitude gaits for the non-
Abelian group components. Finally, in section 5 we consider a family of gaits and present a
method for following a trajectory in the plane.

2. Problem formulation. Consider a fish-like body modeled as a set of articulated rigid
links connected by hinged joints. The body is assumed to be two-dimensional and neutrally
buoyant. The example we will consider here is a three-link body with two joints, as in Figure 1,
which begins at rest, and is immersed in a perfect fluid. The formulation we use is the same
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Figure 1. A three-link swimmer.

as that in [4], but here we review the main ideas and define the notation used.

Kinematics. The overall motion of the body is represented by the position and orientation
of the middle body relative to an inertial frame of reference and is given by an element
s = (x, y, β) ∈ SE(2), the special Euclidean group. As noted earlier, we will exploit the
semidirect product structure of this group. The shape of the body is determined by the
angles θ1 and θ2 between the joints, which we call the shape variables. In computations, it
will be useful to express the positions of the outer links relative to this middle link by elements
x1, x2 ∈ SE(2), where we label the outer links as 1 and 2 as in Figure 1. These elements x1

and x2 are of course determined completely by the angles θ1 and θ2.

Dynamics. The lack of external forces or torques acting on the body or the fluid leads
to the conservation of a momentum-like quantity of the body plus fluid system. We assume
the fluid is inviscid, incompressible, and because there is no mechanism for the generation of
vorticity, irrotational for all time. Thus the velocity field can be represented as the gradient
of a scalar potential,

u = ∇φ.(2.1)

To determine the equations of motion, we use the Lagrangian formulation, as in [9, 5, 4]. The
Lagrangian of the system is equal to the total kinetic energy of the body plus the fluid,

L = TB + TF ,(2.2)

where the fluid kinetic energy TF is given by

TF =
1

2

∫
F
ρF |u|2 dV,(2.3)

where ρF is the fluid density. For an ideal fluid, it is well known that the motion of the
fluid is determined completely by the motion of the solid bodies [9]; that is, the total kinetic
energy may be expressed solely in terms of the velocities of the bodies, with the role of the
fluid appearing only as added inertias that of course depend on the configuration of the solid
bodies. This formulation is originally due to Kirchhoff [7, 9] and may also be understood as
an explicit reduction by the particle-relabeling symmetry [4].
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The potential φ may therefore be written as a sum of translational and rotational velocity
potentials corresponding to each link. The Neumann boundary condition of no penetration is
imposed along the surface, requiring that the normal velocity of the fluid, ∇φ · n = ∂φ

∂n , at a
point along the body surface be equal to the normal velocity of the body at that point.

Since the fluid has infinite extent, the total momentum of the system is indeterminate.
However, we may consider the system “impulse,” a momentum-like quantity defined by Lord
Kelvin [9]. The impulse is a product of the total link inertias (actual plus added inertias) and
the body velocities of each link, and may be expressed as in [4] as

hs =

3∑
j=1

(
AdT

x−1
1

(I1jξj) + AdT
x−1
2

(I2jξj) + I3jξj

)
,(2.4)

where ξj ∈ R
3 ∼= se(2) is the velocity of link j with respect to a reference frame attached to

that link, where links 1, 2 are the outer links as before, and link 3 is the middle link. The
matrices Iij are the total inertia terms such that the total kinetic energy of the body plus
fluid system is

T =
1

2

3∑
i,j=1

ξTi Iijξj(2.5)

and AdT
x−1
j

are operators that map the momenta term corresponding to body j from the j

body-fixed frame to the body-fixed frame of the middle body (see [17, 4] for more discussion
of the Ad operator and background on Lie groups). Defining ζj = x−1

j ẋj as the velocity of
link j relative to the middle link, expressed with respect to a frame fixed to body j, we then
can write the velocities ξj as

ξj = ζj + Adx−1
j
ξ3, j = 1, 2.(2.6)

The system impulse may also be expressed with respect to an inertial frame, in which case it
will remain unchanged due to the lack of external forces and moments. As currently defined
with respect to the body frame, in general, the value will change in time. However, when
the system begins at rest, the system impulse hs remains zero for all time. In this case, (2.4)
combined with (2.6) can be rewritten as

Iloc ξ3 +

2∑
α,β=1

(
AdT

x−1
α

Iαβ + I3β

)
ζβ = 0,(2.7)

where

Iloc =

2∑
α,β=1

(
AdT

x−1
α

IαβAdx−1
β

+ AdT
x−1
α

Iα3 + I3βAdx−1
β

)
+ I33(2.8)

is the locked moment of inertia. We may then write (2.7) as

Iloc

(
ξ3 + A(x)ẋ

)
= 0,(2.9)
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where A is the local form of the mechanical connection, an se(2)-valued one-form on the shape
space. When the locked moment of inertia is nondegenerate, (2.9) simplifies to ξ3+A(x)ẋ = 0.
Due to the constraint on the joint between the links, the rigid motion xα can be parameterized
by the single variable θα. Also, considering that ξ3 = g−1ġ, the equations of motion for the
system can be written as

ṡ(t) = −TeLs(t)

(
A(θ)θ̇(t)

)
(2.10)

or in shorthand notation

ṡ = −sA(θ)θ̇,(2.11)

where s ∈ S, s = TeS, and A : TQ → s is the (local) mechanical connection, a Lie algebra-
valued one form on the shape space. It maps a prescribed shape velocity element θ̇ = (θ̇1, θ̇2)
to the negative of the body velocity of the middle body, an element of se(2). The connection
is a function of the added inertias and is computed numerically at each time step. The motion
of the fish can be solved by prescribing a path for θ in shape space and integrating equation
(2.10) in time. Trial and error was used in [4] to determine gaits which generate forward
and turning motions. Here, we ask the reverse question: Given a desired motion, what is the
closed path in shape space required to achieve this motion?

3. Holonomy in semidirect product groups. If the group S is Abelian, then for a given
path in shape space given by θ(t), t ∈ [0, 1], the solution to (2.11) with initial condition
s(0) = e is simply

s(1) = exp

(
−
∫ 1

0
A(θ)θ̇(t) dt

)
.(3.1)

If θ(t) is a closed path for t ∈ [0, 1], then this result is equivalent to integrating the connection
along this path in shape space, or by the Stokes theorem, to integrating the curvature of the
connection over the area enclosed by the path,

exp

(
−
∫ 1

0
A(θ)θ̇(t) dt

)
= exp

(
−
∫
∂C

A(θ) dθ

)
= exp

(
−
∫∫

C
DA(θ) dA

)
,(3.2)

where the curvature DA : TqQ × TqQ → s is the covariant derivative of the connection A,
given by

DA(X,Y ) = dA(X,Y ) − [A(X),A(Y )],(3.3)

where X,Y are vector fields on Q [20]. This is a powerful result because it greatly simplifies
the problem of generating gaits to achieve a desired motion. First, one selects the desired
element in the group space and solves for the right-hand side of (3.1) by taking the logarithm
of both sides. Then, using the equality in (3.2), one finds an area in shape space that encloses
the corresponding volume of the curvature of the connection.

Unfortunately, the case when S is non-Abelian has no explicit solution. This is the case
for motion in the plane, where the Lie group is S = SE(2). However, SE(2) can be expressed
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as the semidirect product SO(2) � R
2. When the Lie group component (G) of the semidi-

rect product group is Abelian, it can be shown that the solution for this component of the
semidirect product group is the same as that for the Abelian case (3.1).

Semidirect products. Recall that if G is a Lie group that acts on a vector space V , then
one can define the semidirect product G�V as the usual product, with the group operation
(g1, v1)(g2, v2) = (g1g2, g1v2+v1), where g1, g2 ∈ G, v1, v2 ∈ V . The Lie algebras corresponding
to the various groups are g = TeG, V = TeV , and s = TeS.

Theorem 3.1. Let S = G�V , where G is Abelian. Consider a closed curve θ(t) ∈ Q for
t ∈ [0, 1], and let A : TQ → s be a principal connection with components Ag : TQ → g and
AV : TQ → V . Then if s(t) = (g(t), v(t)) ∈ S satisfies

ṡ = −sA(θ)θ̇(3.4)

with s(0) = (e, 0), then

holonomyG := g(1) = exp

(
−
∫
∂C

Ag dθ

)
= exp

(
−
∫∫

C
DAg dA

)
.(3.5)

Proof. Since θ(t) is given, we may rewrite (3.4) as ṡ = −sξ(t), where ξ = A(θ)θ̇ is given.
Writing ξ = (ξg, ξv), where ξg ∈ g and ξv ∈ V , this becomes (see [18])

ġ = −TeLgξg,(3.6)

v̇ = −ρ(g)ξv.(3.7)

Clearly, (3.6) is decoupled from (3.7), and since G is Abelian, the solution is

g(t) = exp

(
−
∫ t

0
ξg(τ)dτ

)
.(3.8)

The holonomy of S in the G component is then

holonomyG = g(1) = exp

(
−
∫
∂C

Ag dθ

)
= exp

(
−
∫∫

C
DAg dA

)
,

where the last equality is by the Stokes theorem.
This result is used to generate gaits for the Abelian component of the Lie group which

correspond to turning maneuvers for the fish. As demonstrated in Figure 6(a), this result does
not apply in the general case, and we cannot use this method to generate finite amplitude
translational gaits.

4. Results. For the fish-like body depicted in Figure 1, the shape space Q is parameterized
by (θ1, θ2), so the local connection A(θ1, θ1) : T(θ1,θ2)Q → se(2) is a Lie-algebra-valued one-
form on Q, which may be written as

A(θ1, θ2) = f(θ1, θ2)dθ1 + g(θ1, θ2)dθ2,(4.1)

where f, g : Q → se(2) depend on the added inertia terms, which depend on the shape of the
body and are computed from (2.9). A boundary element method using source distributions is
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employed to compute the added inertia terms at each time step. For details of the computation,
see [4]. The curvature DA is then a Lie-algebra-valued two-form on Q, computed from (3.3)
as

DA =

[(
∂g

∂θ1
− ∂f

∂θ2

)
− [f, g]

]
dθ1 ∧ dθ2(4.2)

= γ(θ1, θ2)dθ1 ∧ dθ2,(4.3)

where γ : Q → se(2) is the bracketed term in (4.2). The curvature has three components: one
corresponding to rotational body velocity and two corresponding to translational body velocity
terms. The translational components, denoted u and v, correspond to motion parallel to the
direction of the major and minor axes of the middle link, respectively. The three components
of γ are computed numerically on a grid in the (θ1, θ2) plane and plotted in Figure 2. The
plots correspond to a fish-like body with three equal size elliptical links where the dimensions
(as in Figure 1) are a = 20, c = 2 and the aspect ratio of the ellipses is 10.

(a) (b) (c)

Figure 2. (a) ω, (b) u, and (c) v components of curvature.

4.1. Using the curvature for gait generation. Since SO(2) is Abelian and SE(2) =
SO(2) � R

2, one can use the ω component of the curvature plot to develop finite-amplitude
turning gaits, using the theory in section 3. The ω-component plot is shown enlarged in
Figure 4. Note that the regions of largest curvature occur in two opposite corners of the
shape space. These regions correspond to the fish configuration where the joints are bent in
a “C”-shape. The most efficient turning gaits will enclose these regions of high curvature.
Intuitively, this makes sense as one would expect a turning fish to coil its body into a “C”-
shape to minimize the inertial resistance of the fluid as it turns. Likewise, a fish in an extended
or “S”-shape configuration trying to rotate would encounter larger inertial forces and would
not be expected to turn easily.

The procedure for gait-generation for the Abelian subgroup component is straightforward:
1. Choose the desired Abelian Lie group element (here, the desired net rotation).
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2. Determine the corresponding Lie algebra element by applying the logarithm map.
3. Find a path in shape space that encloses a volume equal to the negative value of the

Lie algebra element found in the previous step.
Note that, since the net rotation depends only on the enclosed area, the initial shape config-
uration need not be a point on the path, as shown in Figure 3.

(a) (b)

Figure 3. Two paths resulting in the same holonomy in the Abelian subgroup component, but starting and
ending at different points in shape space.

Exponential map. The exponential map takes elements of the Lie algebra and maps them
to the Lie group. For SE(2), the exponential map is given by exp(u, v, ω) = (x, y, β), where

β = ω,(4.4)

(x, y) =

{
(u, v), ω = 0,
1
ω (u sinω + v(1 − cosω), u(cosω − 1) + v sinω), ω �= 0.

(4.5)

For the purposes of this paper, we will require only the component of this map given by (4.4),
so for this component, the exponential map, and its inverse, the log map, are just the identity.

As an example of gait-generation, we choose a desired net rotation of β = π/4. Thus,
ω = π/4 and we seek a closed path in (θ1, θ2) space that encloses a volume equal to −π/4.
Figure 4 illustrates one such path, given by

θ1(t) = −1.5 + .46 cos(t),

θ2(t) = 1.5 − .46 sin(t),
(4.6)

where t ∈ [0, 2π]. Note that the holonomy is independent of the speed of travel along this
path.
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Figure 4. Path in shape space resulting in net rotation of π
4

radians: θ1(t) = −1.5 + .46 cos(t); θ2(t) =
1.5 − .46 sin(t).

The fish middle link begins at a zero degree angle from the horizontal and, after one shape
space loop, has rotated 45 degrees counterclockwise, as in Figure 5. The angles of the joints
are the same in the original and final configuration.

The start and end points of the closed path have no effect on the net rotation, as implied
by (3.5). However, the choice for the start and end points will affect the net holonomy in the
translational component of motion. Figure 6 shows the trajectory of the center of the fish for
various starting points in the prescribed path. The starting points are labeled in Figure 4 in
the same color as the corresponding paths in Figures 6(a) and 6(b). In each case, the path
is in the clockwise direction. Because the net holonomy in these directions depends on the
starting point of the path, it is clear that for the translational component in SE(2), as is
the case for general non-Abelian groups, a formula analogous to (3.5) is not possible, as the
holonomy cannot depend only on the area enclosed by the path.

As a second example, we present a gait to achieve a net rotation of π/2, while starting
and ending with the fish in a straight configuration (unlike the previous example, where
the fish starts and ends in a “C”-shape). In order to begin and end with a straightened
out configuration, we choose the gait shape space path to begin and end at the origin, and
numerically find an area in shape space that encloses a volume of −π/2. The path selected
is shown in red in Figure 7 along with the initial and final configurations of the swimmer. A
video animation of the turning gait is available.

4.2. Determining degree of maneuverability of fish shape via numerical experiments.
A numerical study was performed to determine how the body geometry affects the rotational

http://www.princeton.edu/~jmelli/siads/fishrotate90.mov
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Figure 5. Turning gait path in shape space in red with the rotation holonomy in blue along with the
final configuration for a three-link swimmer after one turning gait. See also the accompanying animation
(64988 01.gif [190KB]).

maneuverability of the fish. This was done by examining the ω component of the curvature
plots for various shape geometries along the line θ1 = −θ2, corresponding to “C”-shapes,
which have been shown to be the most efficient configurations for turning gaits. The variables
examined were the aspect ratio of each individual ellipse as well as the gap between the joints.
The number of bodies was held fixed at three and the sizes of all three bodies are assumed to
be equal. It was found (see Figure 8(b)) that a larger aspect ratio cross section results in a
larger curvature for a given shape configuration. Also, as illustrated in Figure 8(a), increasing
the gap between joints improves the maneuverability as well, though the effect saturates for
larger gap values. Thus for improved turning, a slender fish with large gaps between joints is
preferred to a rounder body with the individual links close together.

4.3. Hydrodynamically coupled versus decoupled. The swimming of an articulated body
in a potential flow has been studied by Radford [22], in which it was assumed that the bod-
ies were dynamically coupled, but hydrodynamically decoupled; that is, the added inertias
for each body component are determined assuming it is hydrodynamically isolated from all
the other bodies. Our current numerical scheme removes this approximation and accurately
computes the added inertias of the system, and thus provides a way of validating the hydro-
dynamically decoupled assumption.

We compare the curvature plots for both the hydrodynamically coupled and decoupled
cases. Figure 9 is a plot of the ω component of the curvature for both cases. The plots
are qualitatively similar in many respects: both show relatively small curvature in the areas
of shape space corresponding to the fish in an “S” configuration. Likewise, the decoupled
case accurately predicts that the curvature is greatest when the fish is in a “C” configuration.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_01.gif
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(a) (b)

Figure 6. Group motion: (a) Translation and (b) rotation resulting from the prescribed paths in shape space:
θ1(t) = −1.5+ .46 cos(t+ δ); θ2(t) = 1.5− .46 sin(t+ δ) for various values of δ. The start and end points of the
closed path have no effect on the net rotation but do affect the net holonomy in the translational component.
Because the net translational holonomy depends on the starting point of the path, a formula analogous to (3.5)
is not possible, as the holonomy cannot depend only on the area enclosed by the path.

Figure 7. Turning gait path in shape space in red with the rotation holonomy in blue along with the
initial (dotted) and final (solid) configurations for a three-link swimmer after one turning gait. See also the
accompanying animation (64988 02.gif [138KB]).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_02.gif


MOTION PLANNING IN A PERFECT PLANAR FLUID 661

(a) (b)

Figure 8. Parametric study of various fish geometries. r is the distance from the origin along the line
θ1 = −θ2: (a) The gap between links is varied, while the aspect ratio is held fixed at a value of 10. (b) The
aspect ratio of each link is fixed. The gap and overall length of the fish are held fixed.

However, the decoupled assumption incorrectly predicts a maximum curvature when the joints
are at approximately ±π/2. Also, the decoupled assumption underpredicts the curvature in
the highest curvature region. However, overall the hydrodynamically decoupled assumption
is surprisingly accurate at predicting curvature of the connection, and thus predicting the
overall rotation for any given gait.

4.4. Removing the middle link. It has been observed that carangiform fish have devel-
oped a narrow necking region in the peduncle, the region anterior of the tail (see Figure 10).
Lighthill has proposed that the reduced added mass in this region minimizes the recoil forces
experienced by a fish [13]. We crudely model this necking region and reduction in size by
removing the middle link and studying the effect on the maneuverability of the fish.

Consider the same three-link, two hinged swimmer as before, but now with the middle
link removed, as in Figure 11. Here, the front link can be thought of as representing the dorsal
fin, and the rear link as representing the caudal fin in a carangiform fish. (The interactions
of these fins in real fishes were considered in the experiments of [2]. For more on undulatory
propulsion in carangiform fishes, see [10].) The curvature plots for the two-link swimmer
are shown in Figure 12. They are qualitatively similar to those of the three-link swimmer;
however they are quantitatively considerably different. The ω-component plot, Figure 12(a),
has some characteristics similar to those of the three-link ω curvature plot—most notably
a relatively flat surface, except in the two shape space regions corresponding to a “C” type
configuration in the three-link body. Unlike the three-link plot, however, the two-link plot has
a local maximum in the high curvature region. This is similar to what was found in the case of
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(a) (b)

Figure 9. (a) Hydrodynamically coupled and (b) hydrodynamically decoupled ω component of curvature plot.

Figure 10. Bluegill Sunfish (Lepomis macrochirus), a carangiform mode swimmer. Notice the narrow
necking region between the body and tail. (Photo courtesy George Lauder, Harvard University.)

the hydrodynamically decoupled three-link body. Perhaps the lack of a middle link and thus
increased distance between links improves the assumption of hydrodynamic isolation which
results in the similarity between these two figures. As a clearer example of this effect, consider
the ω-component curvature plots in Figure 13 for the two-link body under the assumption of
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Figure 11. A two-link swimmer. The two links may be viewed as representing the dorsal and caudal fins
of a carangiform swimmer.

(a) (b) (c)

Figure 12. (a) ω, (b) u, and (c) v components of curvature for a two-link, two hinge body assuming
hydrodynamically coupled links.

both hydrodynamically coupled and hydrodynamically decoupled links. The curvature plots
for both cases are qualitatively and quantitatively very similar.

Finally, for a more direct comparison, Figure 14 shows the ω curvature component for the
three-link body versus that of the two-link body (both under the assumption of hydrodynam-
ically coupled links) along the cross section defined by the line θ1 = −θ2. The curvature value
is plotted as a function of distance r from the origin. We see that for a body that is restricted
to small angular deformations, the three-link configuration is preferred to the two-link configu-
ration. A body that is able to achieve larger angular displacements of its joints may prefer the
two-link configuration over the three-link configuration, as it allows for increased rotational
maneuverability for some gaits. For example, for the same path prescribed in (4.6), the net
holonomy for the two-link body is 0.99 radians, compared to 0.79 radians for the three-link
body.
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(a) (b)

Figure 13. (a) Hydrodynamically coupled and (b) hydrodynamically decoupled ω component of curvature
for a two-link body.

Figure 14. Comparison of the ω curvature component versus distance from the origin along a line defined
by θ1 = −θ2 for a two-link and three-link body.
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4.5. Trajectory generation. As noted in section 3 and illustrated in Figure 6(a), Theo-
rem 3.1 cannot be applied to the vector space component of a semidirect product group, so
curvature plots cannot be used to develop large-amplitude gaits for translation in the plane.
However, the curvature plots can be used to develop small-amplitude gaits to achieve local
trajectory tracking.

Using the Magnus expansion [16], Radford [23] obtained a local expansion of the group
displacement resulting from a closed path α in shape space for systems in the form of (2.11)
where the connection A is a function of the shape variables. The expansion, to third order, is

z(α) = −1

2
Fij

∫
α
dθidθj +

1

3
(Fij,k − [Ai, Fjk])

∫
α
dθidθjdθk + . . . ,(4.7)

where Fij is the curvature of A,

Fij ≡ Aj,i −Ai,j − [Ai,Aj ],(4.8)

which is equivalent to (4.3), and the subscript j represents differentiation with respect to θj .
F and A are evaluated at the starting point on the path. The coefficient of the first term is
proportional to the local curvature value. Thus, for small-amplitude loops in shape space, the
curvature plots can be used to develop gaits. The coefficient of the next term is a function of
the local connection and curvature values as well as a higher order derivative of the curvature.
This term is nonzero for 2:1 Lissajous-type paths in shape space. Assuming the system is
controllable with up to second order bracket motions, (4.7) can be used to determine 1:1
and 2:1 small-amplitude Lissajous-type gaits to achieve the desired trajectory in the group.

Note also that small-time local controllability for the system can be shown from the Lie
algebra rank condition. One checks numerically that the vector fields of the local connection
plus iterated Lie brackets of those vector fields span the Lie algebra se(2) at each point in
shape space. (For our three-link swimmer, only the first Lie bracket is required for most points
in shape space, and then one checks that second-order brackets span the remaining directions
of se(2) at degenerate points.) It is then possible to design small-amplitude gaits to achieve
group trajectory tracking following a constructive procedure similar to that in [11].

As an example of an application of the curvature plots for non-Abelian Lie groups, we
develop a gait to achieve pure net lateral motion, that is, so that the fish swims “sideways.”
Consider the contour plot of the v component of curvature in Figure 15. Superimposed on
this plot are the zero-value contours of both the ω and u curvature components, in blue
and magenta, respectively. At the intersection of these two zero-value contours, only the v
curvature component is nonzero. A closed path taken about this point, as depicted with
a black curve, results in nearly pure net sideways motion of the fish. The net motion will
approach a pure lateral direction as the area enclosed by the path approaches zero.

5. Motion planning. Motivated by cross-sectional plots of Figure 14, we consider a family
of gaits to develop a method for tracking a desired trajectory. In particular, we focus on gaits
in which the displacement per gait period is small compared to the overall desired trajectory
displacements. We find that a circular path in shape space about the origin results in pure net
forward motion. From the ω curvature plot in Figure 4 and from the cross-sectional plot in
Figure 14, we see that shifting the gait away from the origin along the line θ1 = −θ2 increases
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Figure 15. Contour lines of the v curvature component, with the zero-value contours of the ω and u
curvature components in blue and magenta, respectively. A gait represented by a black curve at the intersection
of the two zero-value contours results in nearly pure net lateral motion.

the net rotation. From numerical experiments we find that the net motion is a rotation plus
a displacement.

The gait (θ1(t), θ2(t)) is given by the rapidly oscillating complex-valued function

θ(t) = θ1(t) + iθ2(t) = Aeiωt + B(t)(1 − i).(5.1)

The slowly varying offset B corresponds to shifting the circular trajectory about the line
θ1 = −θ2. Here we choose B(t) so that the body follows a desired trajectory in the plane. We
hold A, the amplitude of the path, fixed. We perform numerical experiments to compute the
displacement δ and rotation β from the forward direction (which is defined as the direction
in which the body moves for B = 0) over a single period T of oscillation, as functions of B.
The average velocity and curvature are given by

〈v〉(B) =
δ

T
=

ωδ(B)

2π
, 〈κ〉(B) =

2 sin
(
β(B)

2

)
δ(B)

.(5.2)

For a fixed value of A, we compute 〈v〉 and 〈κ〉 for several values of B, a polynomial fit is
applied, and finally the inverse function, B = P (〈κ〉), is found. We want to follow a specified
trajectory, r(t) = (x(t), y(t)), where the velocity and curvature along the path are given by

v(t) =
√

ẋ2 + ẏ2, κ(t) =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
.(5.3)
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Since B(t) is slowly varying (sometimes referred to as an adiabatic approximation), we ignore
the contribution of Ḃ to θ̇. We match 〈v〉(ω,B) = v(t) and 〈κ〉(B) = κ(t) and solve for ω and
B as functions of time:

B(t) = P (κ), ω(t) = 2π
v

δ(B)
.(5.4)

Finally, the prescribed path in shape space to approximately track the desired trajectory is

θ(t) = Aei
∫ t
0 ω(t′)dt′ + B(t)(1 − i).(5.5)

This method works well only for smoothly varying trajectories where the displacement per
gait period is small compared to the dimension of the trajectory. Figure 16 shows the desired
path in black along with the actual path in blue due to prescribing open loop controls. An
animated video shows the shape deformations as the body follows the desired path.

Figure 16. The desired and actual trajectories in black and blue, respectively, resulting from open-loop
controls based on the adiabatic approximation. See also the accompanying animation (64988 03.gif [841KB]).

6. Conclusions. We have considered the swimming of an articulated fish-like swimming
mechanism in a two-dimensional potential flow. We have extended the geometric theory to
apply previously known results for systems on Abelian groups to the rotation component of
SE(2), exploiting the semidirect product structure. Using plots of the curvature of the local
connection form, we developed gaits to achieve a desired rotation for a three-link swimmer.
It was found that the most efficient turning gaits correspond to “C”-shaped configurations
of the body. A parametric study was performed to assess the degree of maneuverability of
different geometries, and it was found that large aspect ratio links with large gaps between
the joints result in larger curvature values and are better suited for rotational maneuvering.
The curvature plots were used to validate the hydrodynamically decoupled assumption used
in previous works and to study the difference between two-link and three-link swimmers. It
was shown that removing the middle link can improve the turning gait motion for some gaits.
Although the main result is not applicable to non-Abelian groups in general, the curvature
plots can be used to develop small-amplitude gaits to follow a desired trajectory. Finally,
motivated by the cross section of the ω curvature plot, we considered a family of finite-
amplitude gaits and developed a method for tracking a desired trajectory in the plane.

http://www.princeton.edu/~jmelli/siads/motionplanning.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_03.gif
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